1
|
Chang CC, Peng M, Keppeke GD, Tsai LK, Zhang Z, Pai LM, Sung LY, Liu JL. Y12C mutation disrupts IMPDH cytoophidia and alters cancer metabolism. FEBS J 2025. [PMID: 40186514 DOI: 10.1111/febs.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 12/17/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Guanosine triphosphate (GTP) is a building block for DNA and RNA, and plays a pivotal role in various cellular functions, serving as an energy source, enzyme cofactor and a key component of signal transduction. The activity of the rate-limiting enzyme in de novo GTP synthesis, inosine monophosphate dehydrogenase (IMPDH), is regulated by nucleotide binding. Recent studies have illuminated that IMPDH octamers can assemble into linear polymers, adding another dimension to its enzymatic regulation. This polymerisation reduces IMPDH's sensitivity to the inhibitory effects of GTP binding, thereby augmenting its activity under conditions with elevated GTP levels. Within cells, IMPDH polymers may cluster to form the distinctive structure known as the cytoophidium, which is postulated to reflect the cellular demand for increased GTP concentrations. Nevertheless, the functional significance of IMPDH polymerisation in in vivo metabolic regulation remains unclear. In this study, we report the widespread presence of IMPDH cytoophidia in various human cancer tissues. Utilising the ABEmax base editor, we introduced a Y12C point mutation into IMPDH2 across multiple cancer cell lines. This mutation disrupts the polymerisation interface of IMPDH and prevents cytoophidium assembly. In some cancer xenografts, the absence of IMPDH polymers led to a downregulation of IMPDH, as well as the glycolytic and pentose phosphate pathways. Furthermore, mutant HeLa-cell-derived xenografts were notably smaller than their wild-type counterparts. Our data suggest that IMPDH polymerisation and cytoophidium assembly could be instrumental in modulating metabolic homeostasis in certain cancers, offering insights into the clinical relevance of IMPDH cytoophidium.
Collapse
Affiliation(s)
- Chia-Chun Chang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Gerson Dierley Keppeke
- School of Life Science and Technology, ShanghaiTech University, China
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Li-Kuang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ziheng Zhang
- School of Life Science and Technology, ShanghaiTech University, China
| | - Li-Mei Pai
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| |
Collapse
|
2
|
Xie R, Gao H, Xie H, Xie C, Li T. Impdh1 was identified as a key protein promotes diabetic vasculopathy by intervention of vascular endothelial cell pyroptosis. BMC Cardiovasc Disord 2025; 25:176. [PMID: 40082765 PMCID: PMC11905600 DOI: 10.1186/s12872-025-04604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/24/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Diabetic angiopathy (DA) is a diabetic vascular complication. Pyroptosis is an inflammatory death that plays an important role in the development of DA, but the underlying mechanisms have not been fully elucidated. METHODS The GSE169332 dataset from the Gene Expression Omnibus (GEO) was subjected to single-cell RNA sequencing (scRNA-seq) analysis, and the data of diabetic mice were subjected to bulk RNA-seq. The pathway through which the inflammatory microenvironment participated in the DA was explored by pseudotime analysis and cell-cell communication. DA models were constructed using in vitro mouse models. The histopathological changes in the collected aorta were observed by hematoxylin and eosin (H&E) and Masson staining. The distribution and expression of the phenotypic markers related to pyroptosis in aortic tissues (NLRP3, pro-Caspase1, and GSDMD-N) were observed by immunohistochemistry (IHC) or immunofluorescence (IF) staining. Following the silencing of the expression of high glucose (HG)-induced Impdh1 in endothelial cells (ECs), Impdh1 expression was detected by real-time quantitative reverse transcription PCR (qRT-PCR), and the expression of Impdh1, NLRP3, pro-Caspase1, and GSDMD was detected by IF staining; cell migration was detected by cell scratch assay, cell viability was detected by cell counting kit-8 (CCK-8) assay, and tube formation was detected by tube formation assay; the levels of IL-1β and IL-18 were detected using the enzyme-linked immunosorbent assay (ELISA) kits. RESULTS Impdh1 was identified by scRNA-seq and bulk RNA-seq as a key molecule in the progression of DA associated with pyroptosis of aortic ECs. By constructing mouse models of DA, it was found that silencing Impdh1 can inhibit mouse aortic pyroptosis. Silencing of the expression of HG-induced Impdh1 revealed an effective amelioration of EC damage and pyroptosis. CONCLUSION Impdh1 is identified as a potential pyroptosis-related gene associated with DA by scRNA-seq of GEO data and bulk RNA-seq. Impdh1 protects aortic ECs by inhibiting pyroptosis and inflammation. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Ruiqiang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Tianhao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
KEPPEKE GD. Design of an all-in-one drug-inducible CRISPR-based genome editing system and evaluation of its efficacy against a recombinant anti-AChR autoantibody. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2025; 37. [DOI: 10.23736/s2724-542x.24.03167-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
4
|
Flores-Mendez M, Ohl L, Roule T, Zhou Y, Tintos-Hernández JA, Walsh K, Ortiz-González XR, Akizu N. IMPDH2 filaments protect from neurodegeneration in AMPD2 deficiency. EMBO Rep 2024; 25:3990-4012. [PMID: 39075237 PMCID: PMC11387764 DOI: 10.1038/s44319-024-00218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Metabolic dysregulation is one of the most common causes of pediatric neurodegenerative disorders. However, how the disruption of ubiquitous and essential metabolic pathways predominantly affect neural tissue remains unclear. Here we use mouse models of a childhood neurodegenerative disorder caused by AMPD2 deficiency to study cellular and molecular mechanisms that lead to selective neuronal vulnerability to purine metabolism imbalance. We show that mouse models of AMPD2 deficiency exhibit predominant degeneration of the hippocampal dentate gyrus, despite a general reduction of brain GTP levels. Neurodegeneration-resistant regions accumulate micron-sized filaments of IMPDH2, the rate limiting enzyme in GTP synthesis, while these filaments are barely detectable in the hippocampal dentate gyrus. Furthermore, we show that IMPDH2 filament disassembly reduces GTP levels and impairs growth of neural progenitor cells derived from individuals with human AMPD2 deficiency. Together, our findings suggest that IMPDH2 polymerization prevents detrimental GTP deprivation, opening the possibility of exploring the induction of IMPDH2 assembly as a therapy for neurodegeneration.
Collapse
Affiliation(s)
- Marco Flores-Mendez
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Ohl
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Roule
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yijing Zhou
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesus A Tintos-Hernández
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kelsey Walsh
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xilma R Ortiz-González
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Naiara Akizu
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Woulfe J, Munoz D. Roncoroni Re-Visited: The Neuronal Intranuclear Rodlet Comes of Age. J Comp Neurol 2024; 532:e25662. [PMID: 39136357 DOI: 10.1002/cne.25662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 01/31/2025]
Abstract
Despite myriad technological advances in neuroscience, the nervous system harbors morphological phenomena that continue to defy explanation. First described by the classical microscopists, including Santiago Ramon y Cajal, at the end of the 19th century, the neuronal intranuclear rodlet (INR) has mystified neurohistologists and microscopists for centuries. In this review article, we will provide an overview of the discovery of the INR as well as the subsequent attempts to elucidate its nature and functional significance. We outline our own studies of this structure over the past three decades, focusing on its elusive nature, its interactions with other nuclear organelles, and on disease-related quantitative changes in Alzheimer's disease. We then describe our somewhat serendipitous discovery that these structures are filamentous aggregates of the nucleotide-synthesizing metabolic enzyme inosine monophosphate dehydrogenase. The filamentation of metabolic enzymes to form mesoscale cellular structures called "rods and rings" or "cytoophidia" (Greek for "cellular snakes") is a recently described phenomenon that remains to be systematically investigated in the nervous system. Thus, this review provides an intriguing historical juxtaposition in neuroscience, inculcating the neuronal INR, once a mere morphological curiosity, into one of the most rapidly evolving fields in contemporary cell biology.
Collapse
Affiliation(s)
- John Woulfe
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital and The University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David Munoz
- St. Michael's Hospital, Unity Health Toronto and Laboratory Medicine & Pathobiology, University of Toronto, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Calise SJ, O’Neill AG, Burrell AL, Dickinson MS, Molfino J, Clarke C, Quispe J, Sokolov D, Buey RM, Kollman JM. Light-sensitive phosphorylation regulates retinal IMPDH1 activity and filament assembly. J Cell Biol 2024; 223:e202310139. [PMID: 38323936 PMCID: PMC10849882 DOI: 10.1083/jcb.202310139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in guanosine triphosphate (GTP) synthesis and assembles into filaments in cells, which desensitizes the enzyme to feedback inhibition and boosts nucleotide production. The vertebrate retina expresses two splice variants IMPDH1(546) and IMPDH1(595). In bovine retinas, residue S477 is preferentially phosphorylated in the dark, but the effects on IMPDH1 activity and regulation are unclear. Here, we generated phosphomimetic mutants to investigate structural and functional consequences of S477 phosphorylation. The S477D mutation resensitized both variants to GTP inhibition but only blocked assembly of IMPDH1(595) filaments. Cryo-EM structures of both variants showed that S477D specifically blocks assembly of a high-activity assembly interface, still allowing assembly of low-activity IMPDH1(546) filaments. Finally, we discovered that S477D exerts a dominant-negative effect in cells, preventing endogenous IMPDH filament assembly. By modulating the structure and higher-order assembly of IMPDH, S477 phosphorylation acts as a mechanism for downregulating retinal GTP synthesis in the dark when nucleotide turnover is decreased.
Collapse
Affiliation(s)
- S. John Calise
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Audrey G. O’Neill
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anika L. Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Josephine Molfino
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Charlie Clarke
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Sokolov
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rubén M. Buey
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Justin M. Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Woulfe J, Munoz DG, Gray DA, Jinnah HA, Ivanova A. Inosine monophosphate dehydrogenase intranuclear inclusions are markers of aging and neuronal stress in the human substantia nigra. Neurobiol Aging 2024; 134:43-56. [PMID: 37992544 DOI: 10.1016/j.neurobiolaging.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
We explored mechanisms involved in the age-dependent degeneration of human substantia nigra (SN) dopamine (DA) neurons. Owing to its important metabolic functions in post-mitotic neurons, we investigated the developmental and age-associated changes in the purine biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH). Tissue microarrays prepared from post-mortem samples of SN from 85 neurologically intact participants humans spanning the age spectrum were immunostained for IMPDH combined with other proteins. SN DA neurons contained two types of IMPDH structures: cytoplasmic IMPDH filaments and intranuclear IMPDH inclusions. The former were not age-restricted and may represent functional units involved in sustaining purine nucleotide supply in these highly metabolically active cells. The latter showed age-associated changes, including crystallization, features reminiscent of pathological inclusion bodies, and spatial associations with Marinesco bodies; structures previously associated with SN neuron dysfunction and death. We postulate dichotomous roles for these two subcellularly distinct IMPDH structures and propose a nucleus-based model for a novel mechanism of SN senescence that is independent of previously known neurodegeneration-associated proteins.
Collapse
Affiliation(s)
- John Woulfe
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - David G Munoz
- Li Ka Shing Knowledge Institute & Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, St. Michael's Hospital, Unity Health, University of Toronto, Toronto, Ontario, Canada
| | - Douglas A Gray
- Center for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics & Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alyona Ivanova
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children and Neurosurgery Research Department, St. Michael's Hospital, Toronto Unity Health, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Flores-Mendez M, Ohl L, Roule T, Zhou Y, Tintos-Hernández JA, Walsh K, Ortiz-González XR, Akizu N. IMPDH2 filaments protect from neurodegeneration in AMPD2 deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576443. [PMID: 38328116 PMCID: PMC10849482 DOI: 10.1101/2024.01.20.576443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Metabolic dysregulation is one of the most common causes of pediatric neurodegenerative disorders. However, how the disruption of ubiquitous and essential metabolic pathways predominantly affect neural tissue remains unclear. Here we use mouse models of AMPD2 deficiency to study cellular and molecular mechanisms that lead to selective neuronal vulnerability to purine metabolism imbalance. We show that AMPD deficiency in mice primarily leads to hippocampal dentate gyrus degeneration despite causing a generalized reduction of brain GTP levels. Remarkably, we found that neurodegeneration resistant regions accumulate micron sized filaments of IMPDH2, the rate limiting enzyme in GTP synthesis. In contrast, IMPDH2 filaments are barely detectable in the hippocampal dentate gyrus, which shows a progressive neuroinflammation and neurodegeneration. Furthermore, using a human AMPD2 deficient neural cell culture model, we show that blocking IMPDH2 polymerization with a dominant negative IMPDH2 variant, impairs AMPD2 deficient neural progenitor growth. Together, our findings suggest that IMPDH2 polymerization prevents detrimental GTP deprivation in neurons with available GTP precursor molecules, providing resistance to neurodegeneration. Our findings open the possibility of exploring the involvement of IMPDH2 assembly as a therapeutic intervention for neurodegeneration.
Collapse
Affiliation(s)
- Marco Flores-Mendez
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Ohl
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Roule
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yijing Zhou
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesus A Tintos-Hernández
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Kelsey Walsh
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xilma R Ortiz-González
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Naiara Akizu
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Deng R, Li YL, Liu JL. Cytoophidia Influence Cell Cycle and Size in Schizosaccharomyces pombe. Int J Mol Sci 2024; 25:608. [PMID: 38203781 PMCID: PMC10779087 DOI: 10.3390/ijms25010608] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cytidine triphosphate synthase (CTPS) forms cytoophidia in all three domains of life. Here we focus on the function of cytoophidia in cell proliferation using Schizosaccharomyces pombe as a model system. We find that converting His359 of CTPS into Ala359 leads to cytoophidium disassembly. By reducing the level of CTPS protein or specific mutation, the loss of cytoophidia prolongs the G2 phase and expands cell size. In addition, the loss-filament mutant of CTPS leads to a decrease in the expression of genes related to G2/M transition and cell growth, including histone chaperone slm9. The overexpression of slm9 alleviates the G2 phase elongation and cell size enlargement induced by CTPS loss-filament mutants. Overall, our results connect cytoophidia with cell cycle and cell size control in Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Ruolan Deng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Lan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
10
|
Calise SJ, O’Neill AG, Burrell AL, Dickinson MS, Molfino J, Clarke C, Quispe J, Sokolov D, Buey RM, Kollman JM. Light-sensitive phosphorylation regulates enzyme activity and filament assembly of human IMPDH1 retinal splice variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558867. [PMID: 37790411 PMCID: PMC10542554 DOI: 10.1101/2023.09.21.558867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Inosine monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in de novo guanosine triphosphate (GTP) synthesis and is controlled by feedback inhibition and allosteric regulation. IMPDH assembles into micron-scale filaments in cells, which desensitizes the enzyme to feedback inhibition by GTP and boosts nucleotide production. The vertebrate retina expresses two tissue-specific splice variants IMPDH1(546) and IMPDH1(595). IMPDH1(546) filaments adopt high and low activity conformations, while IMPDH1(595) filaments maintain high activity. In bovine retinas, residue S477 is preferentially phosphorylated in the dark, but the effects on IMPDH1 activity and regulation are unclear. Here, we generated phosphomimetic mutants to investigate structural and functional consequences of phosphorylation in IMPDH1 variants. The S477D mutation re-sensitized both variants to GTP inhibition, but only blocked assembly of IMPDH1(595) filaments and not IMPDH1(546) filaments. Cryo-EM structures of both variants showed that S477D specifically blocks assembly of the high activity assembly interface, still allowing assembly of low activity IMPDH1(546) filaments. Finally, we discovered that S477D exerts a dominant-negative effect in cells, preventing endogenous IMPDH filament assembly. By modulating the structure and higher-order assembly of IMPDH, phosphorylation at S477 acts as a mechanism for downregulating retinal GTP synthesis in the dark, when nucleotide turnover is decreased. Like IMPDH1, many other metabolic enzymes dynamically assemble filamentous polymers that allosterically regulate activity. Our work suggests that posttranslational modifications may be yet another layer of regulatory control to finely tune activity by modulating filament assembly in response to changing metabolic demands.
Collapse
Affiliation(s)
- S. John Calise
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Audrey G. O’Neill
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anika L. Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Josephine Molfino
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Charlie Clarke
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Sokolov
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rubén M. Buey
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Justin M. Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|