1
|
Álvarez C, González A, Ballesteros I, Gullón B, Negro MJ. In Vitro Assessment of the Prebiotic Potential of Xylooligosaccharides from Barley Straw. Foods 2022; 12:foods12010083. [PMID: 36613299 PMCID: PMC9818743 DOI: 10.3390/foods12010083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Barley straw was subjected to hydrothermal pretreatment (steam explosion) processing to evaluate its potential as a raw material to produce xylooligosaccharides (XOS) suitable for use as a prebiotic. The steam explosion pretreatment generated a liquid fraction containing solubilised hemicellulose. This fraction was purified using gel permeation chromatography to obtain a fraction rich in XOS DP2-DP6. The sample was characterised through analytical techniques such as HPAEC-PAD, FTIR and MALDI-TOF-MS. The prebiotic activity was evaluated using in vitro fermentation in human faecal cultures through the quantification of short-chain fatty acid (SCFA) and lactate production, the evolution of the pH and the consumption of carbon sources. The total SCFA production at the end of fermentation (30 h) was 90.1 mM. Positive significant differences between the amount of XOS from barley straw and fructooligosaccharides after incubation were observed.
Collapse
Affiliation(s)
- Cristina Álvarez
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-91-346-60-57
| | - Alberto González
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain
| | - Ignacio Ballesteros
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| | - María José Negro
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain
| |
Collapse
|
2
|
Brenelli LB, Bhatia R, Djajadi DT, Thygesen LG, Rabelo SC, Leak DJ, Franco TT, Gallagher JA. Xylo-oligosaccharides, fermentable sugars, and bioenergy production from sugarcane straw using steam explosion pretreatment at pilot-scale. BIORESOURCE TECHNOLOGY 2022; 357:127093. [PMID: 35378280 DOI: 10.1016/j.biortech.2022.127093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the production of xylo-oligosaccharides (XOS) from sugarcane straw (SCS) using steam explosion (SE) pretreatment at pilot-scale, as well as co-production of fermentable sugars and lignin-rich residues for bioethanol and bioenergy, respectively. SE conditions 200 °C; 15 bar; 10 min led to 1) soluble XOS yields of up to 35 % (w/w) of initial xylan with ∼50 % of the recovered XOS corresponding to xylobiose and xylotriose, considered the most valuable sugars for prebiotic applications; 2) fermentable glucose yields from the enzymatic hydrolysis of SE-pretreated SCS of up to ∼78 %; 3) increase in the energy content of saccharified SCS residues (16 %) compared to the untreated material. From an integrated biorefinery perspective, it demonstrated the potential use of SCS for the production of value-added XOS ingredients as well as liquid and solid biofuel products.
Collapse
Affiliation(s)
- Lívia B Brenelli
- Interdisciplinary Center of Energy Planning, University of Campinas, Cora Coralina, 330, Campinas, São Paulo, Brazil; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Rakesh Bhatia
- Department of Agronomy and Plant Breeding, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Demi T Djajadi
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Lisbeth G Thygesen
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Sarita C Rabelo
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Avenida Universitária, 3780, Altos do Paraíso, São Paulo, Brazil
| | - David J Leak
- Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Telma T Franco
- School of Chemical Engineering, University of Campinas (UNICAMP), Av. Albert Einstein, Campinas, São Paulo 13083-852, Brazil
| | - Joe A Gallagher
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| |
Collapse
|
3
|
Karnaouri A, Asimakopoulou G, Kalogiannis KG, Lappas AA, Topakas E. Efficient production of nutraceuticals and lactic acid from lignocellulosic biomass by combining organosolv fractionation with enzymatic/fermentative routes. BIORESOURCE TECHNOLOGY 2021; 341:125846. [PMID: 34474235 DOI: 10.1016/j.biortech.2021.125846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 05/26/2023]
Abstract
The aim of this work was to investigate the use of isobutanol as organic solvent for the efficient delignification and fractionation of beechwood through the OxiOrganosolv process in the absence of any catalyst. The results demonstrate that cellulose-rich solid pulp produced after pretreatment is a source of fermentable sugars that can be easily hydrolyzed and serve as a carbon source in microbial fermentations for the production of omega-3 fatty acids and D-lactic acid. The C5 sugars are recovered in the aqueous liquid fractions and comprise a fraction rich in xylo-oligosaccharides with prebiotic potential. The maximum production of optically pure D-lactic from Lactobacillus delbrueckii sp. bulgaricus reached 51.6 g/L (0.57 g/gbiomass), following a simultaneous saccharification and fermentation strategy. Crypthecodenium cohnii accumulated up to 52.1 wt% lipids with a DHA content of 54.1 %, while up to 43.3 % hemicellulose recovery in form of oligosaccharides was achieved in the liquid fraction.
Collapse
Affiliation(s)
- Anthi Karnaouri
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Lab, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Georgia Asimakopoulou
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Lab, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Konstantinos G Kalogiannis
- Chemical Process and Energy Resources Institute (CPERI), CERTH, 6th km Harilaou-Thermi Road, Thermi, 57001 Thessaloniki, Greece
| | - Angelos A Lappas
- Chemical Process and Energy Resources Institute (CPERI), CERTH, 6th km Harilaou-Thermi Road, Thermi, 57001 Thessaloniki, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Lab, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece.
| |
Collapse
|