1
|
Nadigar S, Gattu R, Ramesh S, Dharmappa RN, Nanjundaswamy VK, Ramesh S. A novel class of potent antiangiogenic and antioxidant pyrazoles: synthesis, bioactivity, docking and ADMET studies. Future Med Chem 2024; 16:2285-2300. [PMID: 39263822 PMCID: PMC11622771 DOI: 10.1080/17568919.2024.2394020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
Aim: Angiogenesis is the hallmark of cancer progression driven by VEGF/VEGFR-2 signalling pathway, inhibition of which could be a solution to tackle the progression of tumour cells and thus arresting their growth.Materials & methods: A novel class of pyrazoles was synthesized using arginine and dibromo ketones. Antiangiogenic activity was performed by in vivo yolk sac method. Antioxidant activity was evaluated by hydroxyl and superoxide radical scavenging assays. Docking studies were performed to determine the pyrazoles' binding potential with VEGFR-2 receptor and VEGF tyrosine kinase. ADMET properties were calculated using SwissADME and admetSAR for drug-likeness.Results: Compounds 5a-e showed significant antiangiogenic effects. Compound 5f exhibited effective hydroxyl and superoxide radical scavenging activities. Docking results confirmed the potential binding efficiency with VEGFR-2 receptor over VEGF tyrosine kinase, thus, functioning as competitive-inhibitors. ADMET studies revealed that the compounds possess favourable drug-like qualities.Conclusion: This study presents a novel class of pyrazoles as promising antioxidant and antiangiogenic agents with favourable drug-likeness properties.
Collapse
Affiliation(s)
- Siddaram Nadigar
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce & Science (a recognized Research Centre of University of Mysore), Ooty Road, Mysuru-25, Karnataka, India
| | - Rohith Gattu
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce & Science (a recognized Research Centre of University of Mysore), Ooty Road, Mysuru-25, Karnataka, India
| | - Sanjay Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce & Science (a recognized Research Centre of University of Mysore), Ooty Road, Mysuru-25, Karnataka, India
| | - Rekha N Dharmappa
- Postgraduate Department of Biotechnology, JSS College of Arts, Commerce & Science (a recognized Research Centre of University of Mysore), Ooty Road, Mysuru-25, Karnataka, India
| | - Vijendra Kumar Nanjundaswamy
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce & Science (a recognized Research Centre of University of Mysore), Ooty Road, Mysuru-25, Karnataka, India
| | - Suhas Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce & Science (a recognized Research Centre of University of Mysore), Ooty Road, Mysuru-25, Karnataka, India
| |
Collapse
|
2
|
Williams A, Cooper E, Clark B, Perry L, Ponassi M, Iervasi E, Brullo C, Greenhough A, Ladomery M. Anticancer Effects of the Novel Pyrazolyl-Urea GeGe-3. Int J Mol Sci 2024; 25:5380. [PMID: 38791418 PMCID: PMC11121338 DOI: 10.3390/ijms25105380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
In a screen of over 200 novel pyrazole compounds, ethyl 1-(2-hydroxypentyl)-5-(3-(3-(trifluoromethyl) phenyl)ureido)-1H-pyrazole-4-carboxylate (named GeGe-3) has emerged as a potential anticancer compound. GeGe-3 displays potent anti-angiogenic properties through the presumptive targeting of the protein kinase DMPK1 and the Ca2+-binding protein calreticulin. We further explored the anticancer potential of GeGe-3 on a range of established cancer cell lines, including PC3 (prostate adenocarcinoma), SKMEL-28 (cutaneous melanoma), SKOV-3 (ovarian adenocarcinoma), Hep-G2 (hepatocellular carcinoma), MDA-MB231, SKBR3, MCF7 (breast adenocarcinoma), A549 (lung carcinoma), and HeLa (cervix epithelioid carcinoma). At concentrations in the range of 10 μM, GeGe-3 significantly restricted cell proliferation and metabolism. GeGe-3 also reduced PC3 cell migration in a standard wound closure and trans-well assay. Together, these results confirm the anticancer potential of GeGe-3 and underline the need for more detailed pre-clinical investigations into its molecular targets and mechanisms of action.
Collapse
Affiliation(s)
- Ashleigh Williams
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| | - Emma Cooper
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| | - Bethany Clark
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| | - Laura Perry
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| | - Marco Ponassi
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, L.go. R. Benzi 10, 16132 Genova, Italy
| | - Erika Iervasi
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, L.go. R. Benzi 10, 16132 Genova, Italy
| | - Chiara Brullo
- Department of Pharmacy, Medicinal Chemistry Section, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy;
| | - Alexander Greenhough
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| | - Michael Ladomery
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| |
Collapse
|
3
|
Odeh DM, Allam HA, Baselious F, Mahmoud WR, Odeh MM, Ibrahim HS, Abdel-Aziz HA, Mohammed ER. Design, synthesis, and biological evaluation of dinaciclib and CAN508 hybrids as CDK inhibitors. Drug Dev Res 2024; 85:e22193. [PMID: 38685605 DOI: 10.1002/ddr.22193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
The scaffolds of two known CDK inhibitors (CAN508 and dinaciclib) were the starting point for synthesizing two series of pyarazolo[1,5-a]pyrimidines to obtain potent inhibitors with proper selectivity. The study presented four promising compounds; 10d, 10e, 16a, and 16c based on cytotoxic studies. Compound 16a revealed superior activity in the preliminary anticancer screening with GI % = 79.02-99.13 against 15 cancer cell lines at 10 μM from NCI full panel 60 cancer cell lines and was then selected for further investigation. Furthermore, the four compounds revealed good safety profile toward the normal cell lines WI-38. These four compounds were subjected to CDK inhibitory activity against four different isoforms. All of them showed potent inhibition against CDK5/P25 and CDK9/CYCLINT. Compound 10d revealed the best activity against CDK5/P25 (IC50 = 0.063 µM) with proper selectivity index against CDK1 and CDK2. Compound 16c exhibited the highest inhibitory activity against CDK9/CYCLINT (IC50 = 0.074 µM) with good selectivity index against other isoforms. Finally, docking simulations were performed for compounds 10e and 16c accompanied by molecular dynamic simulations to understand their behavior in the active site of the two CDKs with respect to both CAN508 and dinaciclib.
Collapse
Affiliation(s)
- Dana M Odeh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Fady Baselious
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Walaa R Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohanad M Odeh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Hany S Ibrahim
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Cairo, Dokki, Egypt
| | - Eman R Mohammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Tripathi K, Kaushik P, Yadav DK, Kumar R, Misra SR, Godara R, Bashyal BM, Rana VS, Kumar R, Yadav J, Shakil NA. Synthesis, antifungal evaluation, two-dimensional quantitative structure-activity relationship and molecular docking studies of isoxazole derivatives as potential fungicides. PEST MANAGEMENT SCIENCE 2024. [PMID: 38690722 DOI: 10.1002/ps.8152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Sheath blight and bakanae disease, prominent among emerging rice ailments, exert a profound impact on rice productivity, causing severe impediments to crop yield. Excessive use of older fungicides may lead to the development of resistance in the pathogen. Indeed, a pressing and immediate need exists for novel, low-toxicity and highly selective fungicides that can effectively combat resistant fungal strains. RESULTS A series of 20 isoxazole derivatives were synthesized using alkoxy/halo acetophenones and N,N-dimethylformamidedimethylacetal. These compounds were characterized by various spectroscopic techniques, namely 1H nuclear magnetic resonance (NMR), 13C NMR and liquid chromatography-high-resolution mass spectrometry, and were evaluated for their fungicidal activity against Rhizoctonia solani and Fusarium fujikuroi. Compound 5n (5-(2-chlorophenyl) isoxazole) exhibited highest activity (effective dose for 50% inhibition [ED50] = 4.43 μg mL-1) against R. solani, while 5p (5-(2,4-dichloro-2-hydroxylphenyl) isoxazole) exhibited highest activity (ED50 = 6.7 μg mL-1) against F. fujikuroi. Two-dimensional quantitative structural-activity relationship (QSAR) analysis, particularly multiple linear regression (MLR) (Model 1), highlighted chi6chain and DistTopo as the key descriptors influencing fungicidal activity. Molecular docking studies revealed the potential of these isoxazole derivatives as novel fungicides targeting sterol 14α-demethylase enzyme, suggesting their importance as crucial intermediates for the development of novel and effective fungicides. CONCLUSION All test compounds were effective in inhibiting both fungi, according to the QSAR model, with various descriptors, such as structural, molecular shape analysis, electronic and thermodynamic, playing an important role. Molecular docking studies confirmed that these compounds can potentially replace commercially available fungicides and help control fungal pathogens in rice crops effectively. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kailashpati Tripathi
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-National Research Centre on Seed Spices, Ajmer, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Parshant Kaushik
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Rakesh Kumar
- ICAR-Central Inland Fishries Research Institute, Guwahati, India
| | - Sameer Ranjan Misra
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajni Godara
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Bishnu Maya Bashyal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Virendra Singh Rana
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajesh Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jagdish Yadav
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Najam Akhtar Shakil
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
5
|
Soliman DH, Nafie MS. Design, synthesis, and docking studies of novel pyrazole-based scaffolds and their evaluation as VEGFR2 inhibitors in the treatment of prostate cancer. RSC Adv 2023; 13:20443-20456. [PMID: 37435371 PMCID: PMC10331375 DOI: 10.1039/d3ra02579a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Since VEGFR-2 plays a crucial role in tumor growth, angiogenesis, and metastasis, it is a prospective target for cancer treatment. In this work, a series of 3-phenyl-4-(2-substituted phenylhydrazono)-1H-pyrazol-5(4H)-ones (3a-l) were synthesized and investigated for their cytotoxicity against the PC-3 human cancer cell line compared to Doxorubicin and Sorafenib as reference drugs. Two compounds 3a and 3i showed comparable cytotoxic activity with IC50 values of 1.22 and 1.24 μM compared to the reference drugs (IC50 = 0.932, 1.13 μM). Compound 3i was found to be the most effective VEGFR-2 inhibitor using in vitro testing of the synthesized compounds, with nearly 3-fold higher activity than Sorafenib (30 nM), with IC50 8.93 nM. Compound 3i significantly stimulated total apoptotic prostate cancer cell death 55.2-fold (34.26% compared to 0.62% for the control) arresting the cell cycle at the S-phase. The genes involved in apoptosis were also impacted, with proapoptotic genes being upregulated and antiapoptotic Bcl-2 being downregulated. These results were supported by docking studies of these two compounds within the active site of the VEGFR2 enzyme. Finally, in vivo, the study revealed the potentiality of compound 3i to inhibit tumor proliferation by 49.8% reducing the tumor weight from 234.6 mg in untreated mice to 83.2 mg. Therefore, 3i could be a promising anti-prostate cancer agent.
Collapse
Affiliation(s)
- Dalia H Soliman
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University Badr City Cairo Egypt
| | - Mohamed S Nafie
- Department of Chemistry (Biochemistry Program), Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| |
Collapse
|
6
|
Linden M, Hofmann S, Herman A, Ehler N, Bär RM, Waldvogel SR. Electrochemical Synthesis of Pyrazolines and Pyrazoles via [3+2] Dipolar Cycloaddition. Angew Chem Int Ed Engl 2023; 62:e202214820. [PMID: 36478106 DOI: 10.1002/anie.202214820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Pyrazolines and pyrazoles are common and important motifs of pharmaceutical agents and agrochemicals. Herein, the first electrochemical approach for their direct synthesis from easily accessible hydrazones and dipolarophiles up to decagram scale is presented. The application of a biphasic system (aqueous/organic) even allows for the conversion of highly sensitive alkenes, wherein inexpensive sodium iodide is employed in a dual role as supporting electrolyte and mediator. In addition, mechanistic insight into the reaction is given by the isolation of key step intermediates. The relevance of the presented reaction is underlined by the synthesis of commercial herbicide safener mefenpyr-diethyl in good yields.
Collapse
Affiliation(s)
- Martin Linden
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Silja Hofmann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Antonia Herman
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Nicole Ehler
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Robin M Bär
- Research & Development, Crop Science, Bayer AG, Alfred-Nobel-Str. 50, 40789, Monheim am Rhein, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
7
|
Swedan HK, Kassab AE, Gedawy EM, Elmeligie SE. Design, synthesis, and biological evaluation of novel ciprofloxacin derivatives as potential anticancer agents targeting topoisomerase II enzyme. J Enzyme Inhib Med Chem 2023; 38:118-137. [PMID: 36305290 PMCID: PMC9635472 DOI: 10.1080/14756366.2022.2136172] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A series of novel ciprofloxacin (CP) derivatives substituted at the N-4 position with biologically active moieties were designed and synthesised. 14 compounds were 1.02- to 8.66-fold more potent than doxorubicin against T-24 cancer cells. Ten compounds were 1.2- to 7.1-fold more potent than doxorubicin against PC-3 cancer cells. The most potent compounds 6, 7a, 7b, 8a, 9a, and 10c showed significant Topo II inhibitory activity (83-90% at 100 μM concentration). Compounds 6, 8a, and 10c were 1.01- to 2.32-fold more potent than doxorubicin. Compounds 6 and 8a induced apoptosis in T-24 (16.8- and 20.1-fold, respectively compared to control). This evidence was supported by an increase in the level of apoptotic caspase-3 (5.23- and 7.6-fold, sequentially). Both compounds arrested the cell cycle in the S phase in T-24 cancer cells while in PC-3 cancer cells the two compounds arrested the cell cycle in the G1 phase. Molecular docking simulations of compounds 6 and 8a into the Topo II active site rationalised their remarkable Topo II inhibitory activity.
Collapse
Affiliation(s)
- Hadeer K. Swedan
- Central Administration of Research and Health Development, Ministry of Health, and Population (MoHP), Cairo, Egypt
| | - Asmaa E. Kassab
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Cairo University, Cairo, Egypt
| | - Ehab M. Gedawy
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Cairo University, Cairo, Egypt
- Faculty of Pharmacy and Pharmaceutical Industries, Department of Pharmaceutical Chemistry, Badr University in Cairo (BUC), Badr City, Egypt
| | - Salwa E. Elmeligie
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Lei ZW, Yao J, Liu H, Ma C, Yang W. Synthesis and Bioactivity of Novel Sulfonate Scaffold-Containing Pyrazolecarbamide Derivatives as Antifungal and Antiviral Agents. Front Chem 2022; 10:928842. [PMID: 35815220 PMCID: PMC9257181 DOI: 10.3389/fchem.2022.928842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
Novel pyrazolecarbamide derivatives bearing a sulfonate fragment were synthesized to identify potential antifungal and antiviral agents. All the structures of the key intermediates and target compounds were confirmed by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). The single-crystal X-ray diffraction of the compound T22 showed that pyrazole carbamide is a sulfonate. The in vitro antifungal activities of the target compounds against Colletotrichum camelliae, Pestalotiopsis theae, Gibberella zeae, and Rhizoctonia solani were evaluated at 50 μg/ml. Among the four pathogens, the target compounds exhibited the highest antifungal activity against Rhizoctonia solani. The compound T24 (EC50 = 0.45 mg/L) had higher antifungal activity than the commercial fungicide hymexazol (EC50 = 10.49 mg/L) against R. solani, almost similar to bixafen (EC50 = 0.25 mg/L). Additionally, the target compounds exhibited protective effects in vivo against TMV. Thus, this study reveals that pyrazolecarbamide derivatives bearing a sulfonate fragment exhibit potential antifungal and antiviral activities.
Collapse
Affiliation(s)
- Zhi-Wei Lei
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
- *Correspondence: Zhi-Wei Lei,
| | - Jianmei Yao
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Huifang Liu
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Chiyu Ma
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Wen Yang
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| |
Collapse
|
9
|
Kumar R, Kumar A, Srivastava AK, Brahmachari G, Misra N. Spectroscopic and Structural Investigations on Novel 6-Amino-3-Phenyl-4-(Pyridin-4-yl)-2,4-Dihydropyrano[2,3- c] Pyrazole-5-Carbonitrile by FT-IR, NMR, Docking, and DFT Methods. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1832125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ratnesh Kumar
- Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Abhishek Kumar
- Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Ambrish Kumar Srivastava
- Computational Materials Science Laboratory, Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal, India
| | - Neeraj Misra
- Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh, India
| |
Collapse
|
10
|
An Efficient One-pot Synthesis of Certain Stereoselective Spiro[pyrazole-4,5′-isoxazoline]-5-one Derivatives: In vitro Evaluation of Antitumor Activities, Molecular Docking and In silico ADME Predictions. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Shaik BB, Seboletswe P, Mohite SB, Katari NK, Bala MD, Karpoormath R, Singh P. Lemon Juice: A Versatile Biocatalyst and Green Solvent in Organic Transformations. ChemistrySelect 2022. [DOI: 10.1002/slct.202103701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Baji Baba Shaik
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Pule Seboletswe
- School of Chemistry and Physics University of KwaZulu Natal Westville P/Bag X54001 Durban 4000 South Africa
| | - Sachin Balaso Mohite
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Naresh Kumar Katari
- School of Chemistry and Physics University of KwaZulu Natal Westville P/Bag X54001 Durban 4000 South Africa
- Department of Chemistry School of Science GITAM Deemed to be University Hyderabad Telangana 502329 India
| | - Muhammad D. Bala
- School of Chemistry and Physics University of KwaZulu Natal Westville P/Bag X54001 Durban 4000 South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Parvesh Singh
- School of Chemistry and Physics University of KwaZulu Natal Westville P/Bag X54001 Durban 4000 South Africa
| |
Collapse
|
12
|
Tilekar K, Shelke O, Upadhyay N, Lavecchia A, Ramaa CS. Current status and future prospects of molecular hybrids with thiazolidinedione (TZD) scaffold in anticancer drug discovery. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Development and investigation of thiazolidinedione and pyrazoline compounds as antiangiogenic weapons targeting VEGFR-2. Future Med Chem 2021; 13:1963-1986. [PMID: 34581188 DOI: 10.4155/fmc-2021-0139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Angiogenesis deregulation is often linked to cancer and is thus an essential target. Materials & methods: Twenty-nine compounds were developed as VEGFR-2 inhibitors. Compounds were evaluated to determine their antiangiogenic activity. Results: B1, PB11 and PB16 showed HUVEC's IC50 scores in the submicromolar range. B1, B2 and PB16 reduced cellular migration and capillary tube formation of HUVECs. VEGFR-2 inhibitory activity was found in the nanomolar range: 200 nM of B1, 500 nM of B2 and 600 nM of PB16. B1 and PB16 suppressed the formation of new capillaries on growing CAMs. B1 and PB16 occupied the ATP site and allosteric pocket of VEGFR-2 in docking studies. Conclusion: These compounds can target VEGFR-2 and are endowed with in vitro and in vivo antiangiogenic activity.
Collapse
|
14
|
Upadhyay N, Tilekar K, Safuan S, Kumar AP, Schweipert M, Meyer-Almes FJ, C S R. Multi-target weapons: diaryl-pyrazoline thiazolidinediones simultaneously targeting VEGFR-2 and HDAC cancer hallmarks. RSC Med Chem 2021; 12:1540-1554. [PMID: 34671737 PMCID: PMC8459325 DOI: 10.1039/d1md00125f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
In anticancer drug discovery, multi-targeting compounds have been beneficial due to their advantages over single-targeting compounds. For instance, VEGFR-2 has a crucial role in angiogenesis and cancer management, whereas HDACs are well-known regulators of epigenetics and have been known to contribute significantly to angiogenesis and carcinogenesis. Herein, we have reported nineteen novel VEGFR-2 and HDAC dual-targeting analogs containing diaryl-pyrazoline thiazolidinediones and their in vitro and in vivo biological evaluation. In particular, the most promising compound 14c has emerged as a dual inhibitor of VEGFR-2 and HDAC. It demonstrated anti-angiogenic activity by inhibiting in vitro HUVEC proliferation, migration, and tube formation. Moreover, an in vivo CAM assay showed that 14c repressed new capillary formation in CAMs. In particular, 14c exhibited cytotoxicity potential on different cancer cell lines such as MCF-7, K562, A549, and HT-29. Additionally, 14c demonstrated significant potency and selectivity against HDAC4 in the sub-micromolar range. To materialize the hypothesis, we also performed molecular docking on the crystal structures of both VEGFR-2 (PDB ID: 1YWN) and HDAC4 (PDB-ID: 4CBY), which corroborated the designing and biological activity. The results indicated that compound 14c could be a potential lead to develop more optimized multi-target analogs with enhanced potency and selectivity.
Collapse
Affiliation(s)
- Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy Navi Mumbai India
| | - Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy Navi Mumbai India
| | - Sabreena Safuan
- Universiti Sains Malaysia School of Health Sciences Health Campus Universiti Sains Malaysia 16150 Kubang Kerian Kelantan Malaysia
| | - Alan P Kumar
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Markus Schweipert
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt Germany
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt Germany
| | - Ramaa C S
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy Navi Mumbai India
| |
Collapse
|
15
|
Upadhyay N, Tilekar K, Safuan S, Kumar AP, Schweipert M, Meyer-Almes FJ, Ramaa CS. Double-edged Swords: Diaryl pyrazoline thiazolidinediones synchronously targeting cancer epigenetics and angiogenesis. Bioorg Chem 2021; 116:105350. [PMID: 34547645 DOI: 10.1016/j.bioorg.2021.105350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
In the present study, two novel series of compounds incorporating naphthyl and pyridyl linker were synthesized and biological assays revealed 5-((6-(2-(5-(2-chlorophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-oxoethoxy) naphthalene-2-yl)methylene)thiazolidine-2,4-dione (14b) as the most potent dual inhibitors of vascular endothelial growth factors receptor-2 (VEGFR-2) and histone deacetylase 4 (HDAC4). Compounds 13b, 14b, 17f, and 21f were found to stabilize HDAC4; where, pyridyl linker swords were endowed with higher stabilization effects than naphthyl linker. Also, 13b and 14b showed best inhibitory activity on VEGFR-2 as compared to others. Compound 14b was most potent as evident by in-vitro and in-vivo biological assessments. It displayed anti-angiogenic potential by inhibiting endothelial cell proliferation, migration, tube formation and also suppressed new capillary formation in the growing chick chorioallantoic membranes (CAMs). It showed selectivity and potency towards HDAC4 as compared to other HDAC isoforms. Compound 14b (25 mg/kg, i.p.) also indicated exceptional antitumor efficacy on in-vivo animal xenograft model of human colorectal adenocarcinoma (HT-29). The mechanism of action of 14b was also confirmed by western blot.
Collapse
Affiliation(s)
- Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India
| | - Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India
| | - Sabreena Safuan
- School of Health Sciences, Health Campus Universiti Sains 16150 Kubang Kerian, Kelantan, Malaysia
| | - Alan P Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Markus Schweipert
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Darmstadt, Germany
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Darmstadt, Germany.
| | - C S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India.
| |
Collapse
|
16
|
Golovanov AA, Odin IS, Gusev DM, Vologzhanina AV, Sosnin IM, Grabovskiy SA. Reactivity of Cross-Conjugated Enynones in Cyclocondensations with Hydrazines: Synthesis of Pyrazoles and Pyrazolines. J Org Chem 2021; 86:7229-7241. [PMID: 33955756 DOI: 10.1021/acs.joc.1c00569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The cyclocondensation of cross-conjugated enynones, dienynones, and trienynones (easily available due to low-cost starting compounds) with arylhydrazines leads to the regioselective synthesis of pyrazole derivatives (dihetaryl-substituted ethens, buta-1,3-diens, and hexa-1,3,5-triens) or results in 4,5-dihydro-1H-pyrazoles in good yield. The reaction path is controlled by the character of the substituent in enynone: the pyrazoles are obtained from the reaction of substrates that contain five-membered heteroaromatic substituents with arylhydrazines, and the 4,5-dihydro-1H-pyrazoles are obtained from the reaction of 1,5-diphenylpent-1-en-4-yn-3-one with arylhydrazines consistently. Despite the presence of a substituent, cyclocondensation of 2-hydrazinylpyridine with all of examined cross-conjugated enynones leads to the formation of pyrazoles. The reaction does not require special conditions (temperature, catalyst, inert atmosphere). The cyclocondensation pathways are determined by the electronic effect of an electron-rich five-membered heteroaromatic ring in the substrate. The synthesis allows use of various substituents and functional groups in enynone and hydrazine. The present method features high yields and simplicity of the product purification. The obtained pyrazoles possess fluorescent properties with a quantum yield up to 31%.
Collapse
Affiliation(s)
| | - Ivan S Odin
- Togliatti State University, 14 Belorusskaya Str., 445020 Togliatti, Russia
| | - Dmitry M Gusev
- Togliatti State University, 14 Belorusskaya Str., 445020 Togliatti, Russia
| | - Anna V Vologzhanina
- A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Science, 28 Vavilova Str., 119991 Moscow, Russia
| | - Ilya M Sosnin
- Togliatti State University, 14 Belorusskaya Str., 445020 Togliatti, Russia
| | - Stanislav A Grabovskiy
- Ufa Institute of Chemistry, UFRS of the Russian Academy of Science, 71 October Av., 450054 Ufa, Russia
| |
Collapse
|
17
|
Ghosh K, Nayek N, Das S, Biswas N, Sinha S. Design and synthesis of ferrocene‐tethered pyrazolines and pyrazoles: Photophysical studies, protein‐binding behavior with bovine serum albumin, and antiproliferative activity against MDA‐MB‐231 triple negative breast cancer cells. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Koena Ghosh
- Department of Chemistry Presidency University Kolkata India
| | - Nipa Nayek
- Department of Chemistry Presidency University Kolkata India
- Department of Chemistry Vivekananda College for Women Kolkata India
| | - Subhomoy Das
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur India
- Department of Chemistry Bar‐Ilan University Ramat‐Gan Israel
| | - Nabendu Biswas
- Department of Life Sciences Presidency University Kolkata India
| | - Samraj Sinha
- Department of Life Sciences Presidency University Kolkata India
| |
Collapse
|
18
|
Upadhyay N, Tilekar K, Loiodice F, Anisimova NY, Spirina TS, Sokolova DV, Smirnova GB, Choe JY, Meyer-Almes FJ, Pokrovsky VS, Lavecchia A, Ramaa CS. Pharmacophore hybridization approach to discover novel pyrazoline-based hydantoin analogs with anti-tumor efficacy. Bioorg Chem 2021; 107:104527. [PMID: 33317839 DOI: 10.1016/j.bioorg.2020.104527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
In search for new and safer anti-cancer agents, a structurally guided pharmacophore hybridization strategy of two privileged scaffolds, namely diaryl pyrazolines and imidazolidine-2,4-dione (hydantoin), was adopted resulting in a newfangled series of compounds (H1-H22). Herein, a bio-isosteric replacement of "pyrrolidine-2,5-dione" moiety of our recently reported antitumor hybrid incorporating diaryl pyrazoline and pyrrolidine-2,5-dione scaffolds with "imidazoline-2,4-dione" moiety has been incorporated. Complete biological studies revealed the most potent analog among all i.e. compound H13, which was at-least 10-fold more potent compared to the corresponding pyrrolidine-2,5-dione, in colon and breast cancer cells. In-vitro studies showed activation of caspases, arrest of G0/G1 phase of cell cycle, decrease in the expression of anti-apoptotic protein (Bcl-2) and increased DNA damage. In-vivo assay on HT-29 (human colorectal adenocarcinoma) animal xenograft model unveiled the significant anti-tumor efficacy along with oral bioavailability with maximum TGI 36% (i.p.) and 44% (per os) at 50 mg/kg dose. These findings confirm the suitability of hybridized pyrazoline and imidazolidine-2,4-dione analog H13 for its anti-cancer potential and starting-point for the development of more efficacious analogs.
Collapse
Affiliation(s)
- Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India
| | - Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India
| | - Fulvio Loiodice
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", Via E. Orabona, 4, 70126 Bari, Italy
| | - Natalia Yu Anisimova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Tatiana S Spirina
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Darina V Sokolova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Galina B Smirnova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Jun-Yong Choe
- East Carolina Diabetes and Obesity Institute, Department of Chemistry, East Carolina University, Greenville, NC, USA
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Science, Darmstadt, Germany
| | - Vadim S Pokrovsky
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia; Department of Biochemistry, People's Friendship University, Moscow, Russia.
| | - Antonio Lavecchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy.
| | - C S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India.
| |
Collapse
|
19
|
Sharma S, Brahmachari G, Gupta VK. X-Ray Crystal Structure Analysis of Novel 6-Amino-3-Phenyl-4-(Pyridin-4-yl)-2,4-Dihydropyrano[2,3-c]pyrazole-5-Carbonitrile. CRYSTALLOGR REP+ 2020. [DOI: 10.1134/s1063774520070184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Tilekar K, Upadhyay N, Meyer-Almes FJ, Loiodice F, Anisimova NY, Spirina TS, Sokolova DV, Smirnova GB, Choe JY, Pokrovsky VS, Lavecchia A, S Ramaa C. Synthesis and Biological Evaluation of Pyrazoline and Pyrrolidine-2,5-dione Hybrids as Potential Antitumor Agents. ChemMedChem 2020; 15:1813-1825. [PMID: 32715626 DOI: 10.1002/cmdc.202000458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Indexed: 02/06/2023]
Abstract
In search of novel and effective antitumor agents, pyrazoline-substituted pyrrolidine-2,5-dione hybrids were designed, synthesized and evaluated in silico, in vitro and in vivo for anticancer efficacy. All the compounds exhibited remarkable cytotoxic effects in MCF7 and HT29 cells. The excellent antiproliferative activity toward MCF7 (IC50 =0.78±0.01 μM), HT29 (IC50 =0.92±0.15 μM) and K562 (IC50 =47.25±1.24 μM) cell lines, prompted us to further investigate the antitumor effects of the best compound S2 (1-(2-(3-(4-fluorophenyl)-5-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-oxoethyl)pyrrolidine-2,5-dione). In cell-cycle analysis, S2 was found to disrupt the growth phases with increased cell population in G1 /G0 phase and decreased cell population in G2 /M phase. The excellent in vitro effects were also supported by inhibition of anti-apoptotic protein Bcl-2. In vivo tumor regression studies of S2 in HT29 xenograft nude mice, exhibited equivalent and promising tumor regression with maximum TGI, 66 % (i. p. route) and 60 % (oral route) at 50 mg kg-1 dose by both the routes, indicating oral bioavailability and antitumor efficacy. These findings advocate that hybridization of pyrazoline and pyrrolidine-2,5-dioes holds promise for the development of more potent and less toxic anticancer agents.
Collapse
Affiliation(s)
- Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur, 400614, Navi Mumbai, India
| | - Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur, 400614, Navi Mumbai, India
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295, Darmstadt, Germany
| | - Fulvio Loiodice
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", Via E. Orabona, 4, 70126, Bari, Italy
| | - Natalia Y Anisimova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, 115478, Moscow, Russia
| | - Tatiana S Spirina
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, 115478, Moscow, Russia
| | - Darina V Sokolova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, 115478, Moscow, Russia
| | - Galina B Smirnova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, 115478, Moscow, Russia
| | - Jun-Yong Choe
- East Carolina Diabetes and Obesity Institute Department of Chemistry, East Carolina University, 27834, Greenville, North Carolina, USA
| | - Vadim S Pokrovsky
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, 115478, Moscow, Russia.,Department of Biochemistry, People's Friendship University, 117198, Moscow, Russia
| | - Antonio Lavecchia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Napoli, Italy
| | - C S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur, 400614, Navi Mumbai, India
| |
Collapse
|
21
|
Ma L, Ou P, Huang X. Divergent synthesis of 1,3,5-tri and 1,3-disubstituted pyrazoles under transition metal-free conditions. Org Biomol Chem 2020; 18:6487-6491. [PMID: 32785327 DOI: 10.1039/d0ob01478h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pyrazole cores are common structural motifs existing in various agrochemicals and pharmaceuticals. Herein, a transition metal-free, three-component reaction of arylaldehydes, ethyl acrylate and N-tosylhydrazones is described, which leads to the formation of 1,3,5-trisubstituted and 1,3-disubstituted pyrazoles divergently under slightly different conditions.
Collapse
Affiliation(s)
- Liyao Ma
- College of Chemistry, Fuzhou University, Fuzhou 350116, China and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Pengcheng Ou
- College of Chemistry, Fuzhou University, Fuzhou 350116, China and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| |
Collapse
|
22
|
Kim JK, Gong M, Shokova EA, Tafeenko VA, Kovaleva OV, Wu Y, Kovalev VV. Pyrazoles: 'one-pot' synthesis from arenes and carboxylic acids. Org Biomol Chem 2020; 18:5625-5638. [PMID: 32648880 DOI: 10.1039/d0ob01228a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rapid and efficient method for 'one-pot' synthesis of pyrazoles from (hetero)arenes and carboxylic acids via successive formation of ketones and β-diketones followed by heterocyclization with hydrazine has been developed. The utility of the RCOOH/TfOH/TFAA acylation system for intermediate production of ketones and 1,3-diketones is a key feature of this approach. The preliminary evaluation of the anticancer activity of the synthesized pyrazoles is performed.
Collapse
Affiliation(s)
- Jung Keun Kim
- Department of Chemistry, Moscow State University, Lenin's Hills, Moscow 119991, Russia.
| | | | | | | | | | | | | |
Collapse
|
23
|
Synthesis and Cytotoxic Evaluation of Some Substituted 5-Pyrazolones and Their Urea Derivatives. Molecules 2020; 25:molecules25040900. [PMID: 32085429 PMCID: PMC7070565 DOI: 10.3390/molecules25040900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022] Open
Abstract
In this paper, a series of new substituted-5-pyrazolones were first synthesized, then formulated by the Vilsmeier–Haack reaction to obtain substituted-4-carbaldehyde-5-pyrazolones. In the final step, when urea was reacted with formulated pyrazolones, we found that, instead of the C=N bond in azomethine form, the compounds tautomerized to form a series of novel pyrazole-4-ylidenemethylurea structures. The structures of these compounds were elucidated by FTIR, 1H, 13C NMR, LC-MS/MS, and elemental analysis methods. The cytotoxic and antioxidant effects of substituted 5-pyrazolones and their pyrazolone-urea derivatives were investigated in metastatic A431 and noncancerous HaCaT human keratinocytes by a mitochondrial activity test. The effects of the compounds on the migration of cancerous and noncancerous cell lines were investigated by using a cell scratch assay. The General Linear Model, Statistical Package for Social Sciences (SPSS v26) was used to determine if there was a statistically significant difference between the control and the treatment groups. Four of the nine compounds showed an antioxidant effect. All 5-pyrazolone-urea compounds showed higher toxicity (p < 0.05) in cancerous A431 cells compared to noncancerous cells at all time points. All compounds also showed a biphasic hormetic effect. Four of the nine compounds inhibited cell migration.
Collapse
|
24
|
Dwivedi KD, Borah B, Chowhan LR. Ligand Free One-Pot Synthesis of Pyrano[2,3- c]pyrazoles in Water Extract of Banana Peel (WEB): A Green Chemistry Approach. Front Chem 2020; 7:944. [PMID: 32039156 PMCID: PMC6987396 DOI: 10.3389/fchem.2019.00944] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/31/2019] [Indexed: 01/11/2023] Open
Abstract
Here, we have developed a novel, simple, efficient, and green protocol for one-pot synthesis of pyrano[2,3-c]pyrazole using arylidene malononitrile and pyrazolone in Water Extract of Banana Peels (WEB) as a reaction medium at room temperature (r.t.). This is a green and general synthetic protocol without utilization of any toxic organic solvent, ligand, base that could be applicable for the wide substrate scope in good to excellent yields. This protocol has various advantages such as fast reactions, eco-friendly reaction conditions, easy isolation of the product without using column chromatography. The green chemistry matrices calculation like atom economy reaction, environmental factor, as well as process mass intensity indicates the eco-friendly nature of the protocol.
Collapse
Affiliation(s)
| | | | - L. Raju Chowhan
- Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
25
|
Kendre BV, Landge MG, Bhusare SR. Synthesis and biological evaluation of some novel pyrazole, isoxazole, benzoxazepine, benzothiazepine and benzodiazepine derivatives bearing an aryl sulfonate moiety as antimicrobial and anti-inflammatory agents. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
26
|
Sawant AS, Kamble SS, Pisal PM, Meshram RJ, Sawant SS, Kamble VA, Kamble VT, Gacche RN. Synthesis and evaluation of a novel series of 6-bromo-1-cyclopentyl-1H-indazole-4-carboxylic acid-substituted amide derivatives as anticancer, antiangiogenic, and antioxidant agents. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02454-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Ma S, Ouyang B, Wang L, Yao L. Design and Biological Evaluation of 3-Aryl-4-alkylpyrazol-5-amines Based on the Target Fishing. Curr Comput Aided Drug Des 2019; 16:564-570. [PMID: 31580251 DOI: 10.2174/1573409915666191003123900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/28/2019] [Accepted: 09/17/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pyrazol-5-amine derivatives are an important class of heterocyclic compounds. However, there are less 4-alkyl substituted pyrazoles reported. OBJECTIVE Here reported are the design, synthesis and biological evaluation of 3-aryl-4- alkylpyrazol-5-amines derivatives. METHODS A serials of 3-aryl-4-alkylpyrazol-5-amines were designed and the biological action targets were screened by target fishing function of Discovery Studio software. The synthesis route involved 3-oxo-3-arylpropanenitrile formation, alkylation, pyrazole formation, and amides formation. The antitumor activities of these compounds were carried out by thiazolyl blue tetrazolium bromide (MTT) method using U-2 OS (osteosarcoma) and A549 (lung cancer) tumor cells. RESULTS Eight 3-aryl-4-alkylpyrazol-5-amines were synthesized, and their structures were verified by 1H NMR, 13C NMR, and HRMS. Thirteen pharmacophores were mapped out by target fishing. Compound 5h showed anti-proliferation activities against U-2 OS and A549 tumor cell with IC50 value of 0.9 μM and 1.2 μM, respectively. CONCLUSION Compound 5h might represent a promising scaffold for the further development of novel antitumor drugs.
Collapse
Affiliation(s)
- Shuchao Ma
- School of Pharmacy, Yantai University, Yantai, Shandong, 264005, P.R. China
| | - Ben Ouyang
- School of Pharmacy, Yantai University, Yantai, Shandong, 264005, P.R. China
| | - Linan Wang
- School of Pharmacy, Yantai University, Yantai, Shandong, 264005, P.R. China
| | - Lei Yao
- School of Pharmacy, Yantai University, Yantai, Shandong, 264005, P.R. China
| |
Collapse
|
28
|
Alpha-Casein: an efficient, green, novel, and eco-friendly catalyst for one-pot multi-component synthesis of bis (pyrazol-5-ols), dihydro-pyrano[2,3-c]pyrazoles and spiropyranopyrazoles in an environmentally benign manner. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01641-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Meng Y, Zhang T, Gong X, Zhang M, Zhu C. Visible-light promoted one-pot synthesis of pyrazoles from alkynes and hydrazines. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Carreira ARF, Pereira DM, Andrade PB, Valentão P, Silva AMS, Braga SS, Silva VLM. Novel styrylpyrazole-glucosides and their dioxolo-bridged doppelgangers: synthesis and cytotoxicity. NEW J CHEM 2019. [DOI: 10.1039/c9nj01021a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel styrylpyrazole-glucoside conjugates4and5are reported, with5c, aN-glucosyldioxolo derivative being very active against stomach cancer (AGS) cells.
Collapse
Affiliation(s)
- Ana R. F. Carreira
- Chemistry Department
- QOPNA and LAQV-REQUIMTE
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - David M. Pereira
- REQUIMTE/LAQV
- Laboratório de Farmacognosia
- Departamento de Química
- Faculdade de Farmácia
- Universidade do Porto
| | - Paula B. Andrade
- REQUIMTE/LAQV
- Laboratório de Farmacognosia
- Departamento de Química
- Faculdade de Farmácia
- Universidade do Porto
| | - Patrícia Valentão
- REQUIMTE/LAQV
- Laboratório de Farmacognosia
- Departamento de Química
- Faculdade de Farmácia
- Universidade do Porto
| | - Artur M. S. Silva
- Chemistry Department
- QOPNA and LAQV-REQUIMTE
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Susana Santos Braga
- Chemistry Department
- QOPNA and LAQV-REQUIMTE
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Vera L. M. Silva
- Chemistry Department
- QOPNA and LAQV-REQUIMTE
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| |
Collapse
|
31
|
Afolabi F, Souissi W, Rivière G, Lemaitre C, Roe SM, Crickmore N, Viseux EME. Synthesis of novel heteroleptic delocalised cationic pyrazole gold complexes as potent HepG2 cytotoxic agents. Dalton Trans 2018; 47:15338-15343. [PMID: 30276377 DOI: 10.1039/c8dt02832j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new series of cationic gold(i) pyrazole complexes were prepared in excellent yields as their perchlorate salts. Results of cell viability assays show that these novel complexes have good cytotoxic properties against the human HepG2 cancer cell line. These complexes showed promising anti-cancer activities and to our knowledge, pyrazoles have never been tested against this cell line. The regioselectivity of the complexation is also discussed in regards to the substitution pattern of the pyrazoles.
Collapse
Affiliation(s)
- Fatai Afolabi
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK.
| | | | | | | | | | | | | |
Collapse
|
32
|
Wei W, Tang Y, Zhou Y, Deng G, Liu Z, Wu J, Li Y, Zhang J, Xu S. Recycling Catalyst as Reactant: A Sustainable Strategy To Improve Atom Efficiency of Organocatalytic Tandem Reactions. Org Lett 2018; 20:6559-6563. [DOI: 10.1021/acs.orglett.8b02898] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wen Wei
- Department of Chemistry, School of Science, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yuhai Tang
- Department of Chemistry, School of Science, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yan Zhou
- Department of Chemistry, School of Science, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Ge Deng
- Department of Chemistry, School of Science, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Ziyu Liu
- Department of Chemistry, School of Science, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Jun Wu
- Department of Chemistry, School of Science, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yang Li
- Department of Chemistry, School of Science, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Junjie Zhang
- Department of Chemistry, School of Science, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Silong Xu
- Department of Chemistry, School of Science, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
33
|
Afzal E, Alinezhad S, Khorsand M, Khoshnood MJ, Takhshid MA. Effects of Two-by-Two Combination Therapy with Valproic Acid, Lithium Chloride, and Celecoxib on the Angiogenesis of the Chicken Chorioallantoic Membrane. IRANIAN JOURNAL OF MEDICAL SCIENCES 2018; 43:506-513. [PMID: 30214103 PMCID: PMC6123555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND The synergistic effects of valproic acid (VPA), lithium (Li), and celecoxib (CX) have been shown in combination therapy against the proliferation and metastasis of numerous cancers. Angiogenesis plays a critical role in the pathogenesis of tumor growth and metastasis. The aim of the present study was to evaluate the antiangiogenic effects of VPA, lithium chloride (LiCl), and CX, alone or in 2-by-2 combinations, using the chicken chorioallantoic membrane (CAM) assay. METHODS Fertilized chicken eggs were randomly divided into 10 groups: control, VPA (1.8 and 3.6 µmol/CAM), Li (0.15 and 0.60 µmol/CAM), CX (0.02 and 0.08 µmol/CAM), VPA+Li, VPA+CX, and CX+Li (n=10 per group). A window was made on the eggshells and the CAMs were exposed to a filter disk containing VPA, LiCl, and CX, alone or in 2-by-2 combinations. The control CAMs were treated with distilled water (vehicle). Three days after the treatment, the number of vessel branch points was counted in each CAM. The data were analyzed using SPSS, version 15.One-way ANOVA, followed by the Tukey tests, was used to compare the groups. A P<0.05 was considered a statistically significant difference between the groups. RESULTS According to the results, all the tested drugs decreased the number of the vessel branch points in a dose-dependent manner compared to the control group (P<0.001). In addition, combinations of the drugs were more effective in decreasing angiogenesis than the use of each drug alone. CONCLUSION These findings suggest that 2-by-2 combinations of VPA, CX, and LiCl can be considered an effective antiangiogenesis therapeutic modality.
Collapse
Affiliation(s)
- Ehsan Afzal
- Diagnostic Laboratory Sciences and Technology Research Center, Paramedical School, Shiraz University of Medical Sciences, Shiraz, Iran;
| | | | - Marjan Khorsand
- Diagnostic Laboratory Sciences and Technology Research Center, Paramedical School, Shiraz University of Medical Sciences, Shiraz, Iran;
| | | | - Mohammad Ali Takhshid
- Diagnostic Laboratory Sciences and Technology Research Center, Paramedical School, Shiraz University of Medical Sciences, Shiraz, Iran;
| |
Collapse
|
34
|
Venkateswarlu V, Kour J, Kumar KAA, Verma PK, Reddy GL, Hussain Y, Tabassum A, Balgotra S, Gupta S, Hudwekar AD, Vishwakarma RA, Sawant SD. Direct N-heterocyclization of hydrazines to access styrylated pyrazoles: synthesis of 1,3,5-trisubstituted pyrazoles and dihydropyrazoles. RSC Adv 2018; 8:26523-26527. [PMID: 35541044 PMCID: PMC9083136 DOI: 10.1039/c8ra04550j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/02/2018] [Indexed: 11/21/2022] Open
Abstract
A microwave-assisted method has been developed for the synthesis of tri-substituted pyrazoles via direct N-heterocyclization of hydrazines with metal-acetylacetonate and -dibenzylideneacetonate without using any base or additives. Most importantly, the synthesis of 1-aryl-5-phenyl-3-styryl-1H-pyrazoles was achieved in a single step using hydrochloride salt of various phenylhydrazines and this is the first report for direct construction of these molecules. The reaction medium and microwave conditions play a critical role for their selective product formation during the reaction. The present reaction explored the usage of metal-diketonic complexes as reaction substrates providing acetylacetone and dibenzylideneacetone moieties to directly participate in cyclization with hydrazines to form the corresponding pyrazoles in excellent yields. The present protocol introduces the important N-heterocyclic moieties in the final structures, giving the reaction great applications from a medicinal chemistry perspective, particularly in the late stage modification strategies in drug discovery.
Collapse
Affiliation(s)
- Vunnam Venkateswarlu
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India +91 191 2586333 +91 191 2585222
- Academy of Scientific and Innovative Research (AcSIR) Anusandhan Bhawan, 2 Rafi Marg New Delhi 110001 India
| | - Jaspreet Kour
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India +91 191 2586333 +91 191 2585222
- Academy of Scientific and Innovative Research (AcSIR) Anusandhan Bhawan, 2 Rafi Marg New Delhi 110001 India
| | - K A Aravinda Kumar
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India +91 191 2586333 +91 191 2585222
| | - Praveen Kumar Verma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India +91 191 2586333 +91 191 2585222
| | - G Lakshma Reddy
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India +91 191 2586333 +91 191 2585222
- Academy of Scientific and Innovative Research (AcSIR) Anusandhan Bhawan, 2 Rafi Marg New Delhi 110001 India
| | - Yaseen Hussain
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India +91 191 2586333 +91 191 2585222
- Academy of Scientific and Innovative Research (AcSIR) Anusandhan Bhawan, 2 Rafi Marg New Delhi 110001 India
| | - Aliya Tabassum
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India +91 191 2586333 +91 191 2585222
| | - Shilpi Balgotra
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India +91 191 2586333 +91 191 2585222
- Academy of Scientific and Innovative Research (AcSIR) Anusandhan Bhawan, 2 Rafi Marg New Delhi 110001 India
| | - Sorav Gupta
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India +91 191 2586333 +91 191 2585222
- Academy of Scientific and Innovative Research (AcSIR) Anusandhan Bhawan, 2 Rafi Marg New Delhi 110001 India
| | - Abhinandan D Hudwekar
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India +91 191 2586333 +91 191 2585222
- Academy of Scientific and Innovative Research (AcSIR) Anusandhan Bhawan, 2 Rafi Marg New Delhi 110001 India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India +91 191 2586333 +91 191 2585222
| | - Sanghapal D Sawant
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India +91 191 2586333 +91 191 2585222
- Academy of Scientific and Innovative Research (AcSIR) Anusandhan Bhawan, 2 Rafi Marg New Delhi 110001 India
| |
Collapse
|
35
|
Konakanchi R, Gondru R, Nishtala VB, Kotha LR. NaF-catalyzed efficient one-pot synthesis of dihydropyrano[2,3-c]pyrazoles under ultrasonic irradiation via MCR approach. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1479758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ramaiah Konakanchi
- Department of Chemistry, National Institute of Technology, Warangal, Telangana State, India
| | - Ramesh Gondru
- Department of Chemistry, National Institute of Technology, Warangal, Telangana State, India
| | | | - Laxma Reddy Kotha
- Department of Chemistry, National Institute of Technology, Warangal, Telangana State, India
| |
Collapse
|
36
|
Kumar B, Banerjee B, Brahmachari G, Gupta VK. Crystal Structure of Ethyl 6-Amino-5-cyano-4-(4-fluorophenyl)- 2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate. CRYSTALLOGR REP+ 2018. [DOI: 10.1134/s1063774518030057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Identification and characterization of SSE15206, a microtubule depolymerizing agent that overcomes multidrug resistance. Sci Rep 2018; 8:3305. [PMID: 29459693 PMCID: PMC5818492 DOI: 10.1038/s41598-018-21642-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/06/2018] [Indexed: 12/31/2022] Open
Abstract
Microtubules are highly dynamic structures that form spindle fibres during mitosis and are one of the most validated cancer targets. The success of drugs targeting microtubules, however, is often limited by the development of multidrug resistance. Here we describe the discovery and characterization of SSE15206, a pyrazolinethioamide derivative [3-phenyl-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide] that has potent antiproliferative activities in cancer cell lines of different origins and overcomes resistance to microtubule-targeting agents. Treatment of cells with SSE15206 causes aberrant mitosis resulting in G2/M arrest due to incomplete spindle formation, a phenotype often associated with drugs that interfere with microtubule dynamics. SSE15206 inhibits microtubule polymerization both in biochemical and cellular assays by binding to colchicine site in tubulin as shown by docking and competition studies. Prolonged treatment of cells with the compound results in apoptotic cell death [increased Poly (ADP-ribose) polymerase cleavage and Annexin V/PI staining] accompanied by p53 induction. More importantly, we demonstrate that SSE15206 is able to overcome resistance to chemotherapeutic drugs in different cancer cell lines including multidrug-resistant KB-V1 and A2780-Pac-Res cell lines overexpressing MDR-1, making it a promising hit for the lead optimization studies to target multidrug resistance.
Collapse
|
38
|
Fatahpour M, Noori Sadeh F, Hazeri N, Maghsoodlou MT, Hadavi MS, Mahnaei S. Ag/TiO 2 nano-thin films as robust heterogeneous catalyst for one-pot, multi-component synthesis of bis (pyrazol-5-ol) and dihydropyrano[2,3 -c ]pyrazole analogs. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2017.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Zhang T, Meng Y, Lu J, Yang Y, Li GQ, Zhu C. Sunlight-promoted Direct Irradiation of N
-centred Anion: The Photocatalyst-free Synthesis of Pyrazoles in Water. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701200] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Te Zhang
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 People's Republic of China
| | - Yunge Meng
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 People's Republic of China
| | - Jinye Lu
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 People's Republic of China
| | - Yuting Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211816 People's Republic of China
| | - Gong-Qiang Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211816 People's Republic of China
| | - Chunyin Zhu
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 People's Republic of China
- State Key Laboratory of Physical Chemistry of Solid Surfaces; Xiamen University; Xiamen 361005 People's Republic of China
| |
Collapse
|
40
|
Aspirin: an efficient catalyst for synthesis of bis (pyrazol-5-ols), dihydropyrano[2,3-c]pyrazoles and spiropyranopyrazoles in an environmentally benign manner. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1133-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Zhang H, Wei Q, Zhu G, Qu J, Wang B. A facile and expeditious approach to substituted 1 H -pyrazoles catalyzed by iodine. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Sharma S, Brahmachari G, Kant R, Gupta VK. One-pot green synthesis of biologically relevant novel spiro[indolin-2-one-3,4'-pyrano[2,3-c]pyrazoles] and studies on their spectral and X-ray crystallographic behaviors. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2016; 72:335-343. [PMID: 27240765 DOI: 10.1107/s2052520616005060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
Syntheses via green route and single-crystal X-ray structural investigations have been carried out for three spiro[indolin-2-one-3,4'-pyrano[2,3-c]pyrazole] derivatives, 6'-amino-2-oxo-3'-propyl-2'H-spiro[indoline-3,4'-pyrano[2,3-c]pyrazole]-5'-carbonitrile dimethyl sulfoxide monosolvate (5a), 6'-amino-5-fluoro-2-oxo-3'-propyl-2'H-spiro[indoline-3,4'-pyrano[2,3-c]pyrazole]-5'-carbonitrile dimethyl sulfoxide monosolvate (5b) and methyl 6'-amino-5-cyano-1-methyl-2-oxo-3'-propyl-2'H-spiro[indoline-3,4'-pyrano[2,3-c]pyrazole]-3'-carboxylate 0.25 hydrate (5c), respectively. Compounds (5a) and (5b) crystallize in the triclinic space group P\bar 1, whereas compound (5c) crystallizes in the monoclinic space group C2/c. In molecules (5a) and (5b) all the rings are practically flat, while in (5c), the heterocyclic pyran ring adopts a flattened-boat conformation. In (5a) and (5b) the cyanide group is oriented in a (-ap) conformation, while the amino group is oriented in a (+ap) conformation with a pyran ring, but in (5c) both the cyanide and amino groups are oriented in a (-ap) conformation with the pyran ring. In the crystal structure of (5a) and (5b), the molecules are linked by an elaborate system of N-H...O and N-H...N hydrogen bonds to generate a zigzag-like construct. In (5c) molecules are linked by N-H...O hydrogen bonds, thereby generating extended chains. The present communication focuses on the detailed and comparative information about spectral behaviors, single-crystal X-ray crystallographic properties and solid-state supramolecular architectures of these synthesized compounds of potential biological interests.
Collapse
Affiliation(s)
- Sakshi Sharma
- X-ray Crystallography Laboratory, Post-Graduate Department of Physics and Electronics, University of Jammu, Jammu Tawi 180 006, India
| | - Goutam Brahmachari
- Laboratory of Natural Products and Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Rajni Kant
- X-ray Crystallography Laboratory, Post-Graduate Department of Physics and Electronics, University of Jammu, Jammu Tawi 180 006, India
| | - Vivek K Gupta
- X-ray Crystallography Laboratory, Post-Graduate Department of Physics and Electronics, University of Jammu, Jammu Tawi 180 006, India
| |
Collapse
|
43
|
Kershaw Cook LJ, Kearsey R, Lamb JV, Pace EJ, Gould JA. Efficient and chromatography-free methodology for the modular synthesis of oligo-(1 H -pyrazol-4-yl)-arenes with controllable size, shape and steric bulk. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Brahmachari G, Banerjee B. Facile and Chemically Sustainable One-Pot Synthesis of a Wide Array of FusedO- andN-Heterocycles Catalyzed by Trisodium Citrate Dihydrate under Ambient Conditions. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201500465] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis; Department of Chemistry; Visva-Bharati (a Central University); Santiniketan 731235 West Bengal India
| | - Bubun Banerjee
- Laboratory of Natural Products & Organic Synthesis; Department of Chemistry; Visva-Bharati (a Central University); Santiniketan 731235 West Bengal India
| |
Collapse
|
45
|
Kaliraj K, Xia L, Edison TNJI, Lee YR. Straightforward synthesis of diverse dipyrazolylmethane derivatives and their application for fluorescence sensing of Cu 2+ ions. RSC Adv 2016. [DOI: 10.1039/c6ra10530k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Various dipyrazolylmethanes were synthesized and nitro-substituted compound displayed an excellent turn-off fluorescence sensing property for the detection of Cu2+ ions.
Collapse
Affiliation(s)
- Kaliappan Kaliraj
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan 712-749
- Republic of Korea
| | - Likai Xia
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan 712-749
- Republic of Korea
| | | | - Yong Rok Lee
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan 712-749
- Republic of Korea
| |
Collapse
|
46
|
Abd El-Karim SS, Anwar MM, Mohamed NA, Nasr T, Elseginy SA. Design, synthesis, biological evaluation and molecular docking studies of novel benzofuran-pyrazole derivatives as anticancer agents. Bioorg Chem 2015; 63:1-12. [PMID: 26368040 DOI: 10.1016/j.bioorg.2015.08.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 10/25/2022]
Abstract
This study deals with design and synthesis of novel benzofuran-pyrazole hybrids as anticancer agents. Eight compounds were chosen by National Cancer Institute (NCI), USA to evaluate their in vitro antiproliferative activity at 10(-5)M in full NCI 60 cell panel. The preliminary screening of the tested compounds showed promising broad-spectrum anticancer activity. Compound 4c was further assayed for five dose molar ranges in full NCI 60 cell panel and exhibited remarkable growth inhibitory activity pattern against Leukemia CCRF-CEM, MOLT-4, Lung Cancer HOP-92, Colon Cancer HCC-2998, CNS Cancer SNB-75, Melanoma SK-MEL-2, Ovarian Cancer IGROV1, Renal Cancer 786-0, RXF 393, Breast Cancer HS 578T and T-47D (GI50: 1.00-2.71μM). Moreover, enzyme assays were carried out to investigate the possible antiproliferative mechanism of action of compound 4c. The results revealed that compound 4c has good c-Src inhibitory activity at 10μM. In addition, molecular docking studies showed that 4c could bind to the ATP Src pocket sites. Fulfilling the Lipinskiís rule of five in addition to its ADME profile and the biological results, all strongly suggest that 4c is a promising Src kinase inhibitor.
Collapse
Affiliation(s)
- Somaia S Abd El-Karim
- Therapeutical Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Manal M Anwar
- Therapeutical Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Neama A Mohamed
- Therapeutical Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Tamer Nasr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, 11795 Helwan, Cairo, Egypt
| | - Samia A Elseginy
- Green Chemistry Department, National Research Centre, Cairo, Egypt; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| |
Collapse
|
47
|
Varun BV, Gadde K, Prabhu KR. Sulfenylation of β-Diketones Using C-H Functionalization Strategy. Org Lett 2015; 17:2944-7. [PMID: 26053524 DOI: 10.1021/acs.orglett.5b01221] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfenylation of β-diketones is challenging as β-diketones undergo deacylation after sulfenylation in the reaction medium. The sulfenylation of β-diketones without deacylation under metal-free conditions at ambient temperature via a cross dehydrogenative coupling (CDC) strategy is reported. The resultant products can be further manipulated to form α,α-disubstituted β-diketones and pyrazoles.
Collapse
Affiliation(s)
- Begur Vasanthkumar Varun
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Karthik Gadde
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Kandikere Ramaiah Prabhu
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| |
Collapse
|
48
|
|
49
|
Bassaco MM, Fortes MP, Kaufman TS, Silveira CC. Metal-free synthesis of 3,5-disubstituted 1H- and 1-aryl-1H-pyrazoles from 1,3-diyne-indole derivatives employing two successive hydroaminations. RSC Adv 2015. [DOI: 10.1039/c4ra16439c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The uncatalyzed synthesis of 3,5-disubstituted 1H- and 1-aryl-1H-pyrazoles derived from 1,3-diyne indoles was successfully carried out in PEG 400. The scope and limitations of the reaction were studied.
Collapse
Affiliation(s)
- Mariana M. Bassaco
- Departamento de Química
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| | - Margiani P. Fortes
- Departamento de Química
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| | | | | |
Collapse
|