1
|
Utkina N, Likhatskaya G, Malyarenko O, Ermakova S, Balabanova L, Slepchenko L, Bakunina I. Effects of Sponge-Derived Alkaloids on Activities of the Bacterial α-D-Galactosidase and Human Cancer Cell α-N-Acetylgalactosaminidase. Biomedicines 2021; 9:biomedicines9050510. [PMID: 34063022 PMCID: PMC8147984 DOI: 10.3390/biomedicines9050510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 11/30/2022] Open
Abstract
During a search for glycosidase inhibitors among marine natural products, we applied an integrated in vitro and in silico approach to evaluate the potency of some aaptamines and makaluvamines isolated from marine sponges on the hydrolyzing activity of α-N-acetylgalactosaminidase (α-NaGalase) from human cancer cells and the recombinant α-D-galactosidase (α-PsGal) from a marine bacterium Pseudoalteromonas sp. KMM 701. These alkaloids showed no direct inhibitory effect on the cancer α-NaGalase; but isoaaptamine (2), 9-demethylaaptamine (3), damirone B (6), and makaluvamine H (7) reduced the expression of the enzyme in the human colorectal adenocarcinoma cell line DLD-1 at 5 μM. Isoaaptamine (2), 9-demethylaaptamine (3), makaluvamine G (6), and zyzzyanone A (7) are slow-binding irreversible inhibitors of the bacterial α-PsGal with the inactivation rate constants (kinact) 0.12 min−1, 0.092 min−1, 0.079 min−1, and 0.037 min−1, as well as equilibrium inhibition constants (Ki) 2.70 µM, 300 µM, 411 µM, and 105 µM, respectively. Docking analysis revealed that these alkaloids bind in a pocket close to the catalytic amino acid residues Asp451 and Asp516 and form complexes, due to π-π interactions with the Trp308 residue and hydrogen bonds with the Lys449 residue. None of the studied alkaloids formed complexes with the active site of the human α-NaGalase.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irina Bakunina
- Correspondence: ; Tel.: +7-(432)-231-07-05-(3); Fax: +7-(432)-231-07-05-(7)
| |
Collapse
|
2
|
Utkina NK, Likhatskaya GN, Balabanova LA, Bakunina IY. Sponge-derived polybrominated diphenyl ethers and dibenzo-p-dioxins, irreversible inhibitors of the bacterial α-d-galactosidase. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1754-1763. [PMID: 31532404 DOI: 10.1039/c9em00301k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An integrated in vitro and in silico approach was applied to evaluate the potency of hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and spongiadioxins (OH-PBDDs) isolated from Dysidea sponges on the activity of the recombinant α-d-galactosidase of the GH36 family. It was revealed for the first time that all compounds rapidly and apparently irreversibly inhibited the bacterial α-d-galactosidase. The structure-activity relationship study in the series of OH-PBDEs showed that the presence of an additional hydroxyl group in 5 significantly enhanced the potency (IC50 4.26 μM); the increase of bromination in compounds from 1 to 3 increased their potency (IC50 41.8, 36.0, and 16.0 μM, respectively); the presence of a methoxy group decreased the potency (4, IC50 60.5 μM). Spongiadioxins 6, 7, and 8 (IC50 16.6, 33.1, and 28.6 μM, respectively) exhibited inhibitory action comparable to that of monohydroxylated diphenyl ethers 1-3. Docking analysis revealed that all compounds bind in a pocket close to the catalytic amino acid residues. Molecular docking detected significant compound-enzyme interactions in the binding sites of α-d-galactosidase. Superimposition of the enzyme-substrate and the enzyme-inhibitor complexes showed that their binding sites overlap.
Collapse
Affiliation(s)
- Natalia K Utkina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation.
| | | | | | | |
Collapse
|
3
|
Bakunina I, Likhatskaya G, Slepchenko L, Balabanova L, Tekutyeva L, Son O, Shubina L, Makarieva T. Effect of Pentacyclic Guanidine Alkaloids from the Sponge Monanchora pulchra on Activity of α-Glycosidases from Marine Bacteria. Mar Drugs 2019; 17:E22. [PMID: 30609674 PMCID: PMC6356649 DOI: 10.3390/md17010022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/09/2018] [Accepted: 12/25/2018] [Indexed: 12/12/2022] Open
Abstract
The effect of monanchomycalin B, monanhocicidin A, and normonanhocidin A isolated from the Northwest Pacific sample of the sponge Monanchora pulchra was investigated on the activity of α-galactosidase from the marine γ-proteobacterium Pseudoalteromonas sp. KMM 701 (α-PsGal), and α-N-acetylgalactosaminidase from the marine bacterium Arenibacter latericius KMM 426T (α-NaGa). All compounds are slow-binding irreversible inhibitors of α-PsGal, but have no effect on α-NaGa. A competitive inhibitor d-galactose protects α-PsGal against the inactivation. The inactivation rate (kinact) and equilibrium inhibition (Ki) constants of monanchomycalin B, monanchocidin A, and normonanchocidin A were 0.166 ± 0.029 min-1 and 7.70 ± 0.62 μM, 0.08 ± 0.003 min-1 and 15.08 ± 1.60 μM, 0.026 ± 0.000 min-1, and 4.15 ± 0.01 μM, respectively. The 2D-diagrams of α-PsGal complexes with the guanidine alkaloids were constructed with "vessel" and "anchor" parts of the compounds. Two alkaloid binding sites on the molecule of α-PsGal are shown. Carboxyl groups of the catalytic residues Asp451 and Asp516 of the α-PsGal active site interact with amino groups of "anchor" parts of the guanidine alkaloid molecules.
Collapse
Affiliation(s)
- Irina Bakunina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Galina Likhatskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Lubov Slepchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
- Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Larissa Balabanova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
- Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Liudmila Tekutyeva
- Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Oksana Son
- Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Larisa Shubina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Tatyana Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| |
Collapse
|
4
|
Bakunina I, Slepchenko L, Anastyuk S, Isakov V, Likhatskaya G, Kim N, Tekutyeva L, Son O, Balabanova L. Characterization of Properties and Transglycosylation Abilities of Recombinant α-Galactosidase from Cold-Adapted Marine Bacterium Pseudoalteromonas KMM 701 and Its C494N and D451A Mutants. Mar Drugs 2018; 16:E349. [PMID: 30250010 PMCID: PMC6213131 DOI: 10.3390/md16100349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/03/2022] Open
Abstract
A novel wild-type recombinant cold-active α-d-galactosidase (α-PsGal) from the cold-adapted marine bacterium Pseudoalteromonas sp. KMM 701, and its mutants D451A and C494N, were studied in terms of their structural, physicochemical, and catalytic properties. Homology models of the three-dimensional α-PsGal structure, its active center, and complexes with D-galactose were constructed for identification of functionally important amino acid residues in the active site of the enzyme, using the crystal structure of the α-galactosidase from Lactobacillus acidophilus as a template. The circular dichroism spectra of the wild α-PsGal and mutant C494N were approximately identical. The C494N mutation decreased the efficiency of retaining the affinity of the enzyme to standard p-nitrophenyl-α-galactopiranoside (pNP-α-Gal). Thin-layer chromatography, matrix-assisted laser desorption/ionization mass spectrometry, and nuclear magnetic resonance spectroscopy methods were used to identify transglycosylation products in reaction mixtures. α-PsGal possessed a narrow acceptor specificity. Fructose, xylose, fucose, and glucose were inactive as acceptors in the transglycosylation reaction. α-PsGal synthesized -α(1→6)- and -α(1→4)-linked galactobiosides from melibiose as well as -α(1→6)- and -α(1→3)-linked p-nitrophenyl-digalactosides (Gal₂-pNP) from pNP-α-Gal. The D451A mutation in the active center completely inactivated the enzyme. However, the substitution of C494N discontinued the Gal-α(1→3)-Gal-pNP synthesis and increased the Gal-α(1→4)-Gal yield compared to Gal-α(1→6)-Gal-pNP.
Collapse
Affiliation(s)
- Irina Bakunina
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Lubov Slepchenko
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
- School of Economics and Management, School of Natural Sciences of Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Stanislav Anastyuk
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Vladimir Isakov
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Galina Likhatskaya
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Natalya Kim
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Liudmila Tekutyeva
- School of Economics and Management, School of Natural Sciences of Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Oksana Son
- School of Economics and Management, School of Natural Sciences of Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Larissa Balabanova
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
- School of Economics and Management, School of Natural Sciences of Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| |
Collapse
|
5
|
Tapia-Paniagua ST, Ceballos-Francisco D, Balebona MC, Esteban MÁ, Moriñigo MÁ. Mucus glycosylation, immunity and bacterial microbiota associated to the skin of experimentally ulcered gilthead seabream (Sparus aurata). FISH & SHELLFISH IMMUNOLOGY 2018; 75:381-390. [PMID: 29421587 DOI: 10.1016/j.fsi.2018.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/24/2018] [Accepted: 02/02/2018] [Indexed: 05/25/2023]
Abstract
Interest in fish skin immunity and its associated microbiota has greatly increased among immunologists. The objective of this study is to know if skin ulcers may be associated with changes in the mucus composition and microbial diversity. The abundance of terminal carbohydrates, several enzymes (protease, antiprotease, peroxidase, lysozyme) and total immunoglobulin M levels were evaluated in skin mucus of experimentally ulcered gilthead seabream (Sparus aurata L.). Furthermore, the composition of the microbiota of ulcered and non-ulcered skin has been determined using Illumina Miseq technology. Significant decreases of terminal abundance of α-D-mannose, α-D-glucose and N-acetyl-galactosamine in skin mucus of ulcered fish, compared to control fish were detected. The levels of IgM and all the tested enzymes in mucus were decreased in ulcered fish (compared to control fish) although the observed decreases were only statistically significant for proteases and antiproteases. Concomitantly, the analysis of the composition of the skin microbiota showed clear differences between ulcered and non-ulcered areas. The genus taxonomic analysis showed that Staphylococcus and Lactobacillus were more abundant in non-ulcered skin whereas in ulcered area were Streptococcus and Granulicatella. Important decreases of the number of sequences related to Alteromonas, Thalassabius and Winogradskyella were detected in ulcered skin whilst slight increases of sequences related to Flavobacterium, Chryseobacterium and Tenacibaculum genera were observed. Overall these results demonstrated that the presence of skin ulcers provide microenvironments that perturb both the mucus composition and microbial biodiversity of this important external surface which seem to be more vulnerable to diseases.
Collapse
Affiliation(s)
- Silvana Teresa Tapia-Paniagua
- Group of Prophylaxis and Biocontrol of Fish Diseases, Departamento de Microbiología, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain
| | - Diana Ceballos-Francisco
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - M Carmen Balebona
- Group of Prophylaxis and Biocontrol of Fish Diseases, Departamento de Microbiología, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain
| | - María Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Miguel Ángel Moriñigo
- Group of Prophylaxis and Biocontrol of Fish Diseases, Departamento de Microbiología, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain.
| |
Collapse
|
6
|
Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes. Front Microbiol 2016; 7:1408. [PMID: 27667987 PMCID: PMC5016527 DOI: 10.3389/fmicb.2016.01408] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022] Open
Abstract
Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.
Collapse
Affiliation(s)
- Margarita Santiago
- Department of Chemical Engineering and Biotechnology, Centre for Biochemical Engineering and Biotechnology, Universidad de ChileSantiago, Chile
| | - César A. Ramírez-Sarmiento
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Ricardo A. Zamora
- Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Loreto P. Parra
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|