1
|
Hassan IU, Naikoo GA, Salim H, Awan T, Tabook MA, Pedram MZ, Mustaqeem M, Sohani A, Hoseinzadeh S, Saleh TA. Advances in Photochemical Splitting of Seawater over Semiconductor Nano-Catalysts for Hydrogen Production: A Critical Review. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
2
|
Sekar S, Preethi V, Saravanan S, Kim DY, Lee S. Excellent photocatalytic performances of Co 3O 4-AC nanocomposites for H 2 production via wastewater splitting. CHEMOSPHERE 2022; 286:131823. [PMID: 34426138 DOI: 10.1016/j.chemosphere.2021.131823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Natural sunlight-driven photocatalytic hydrogen production from wastewater is one of the most desirable techniques that can realize future green energy technology. Herein, we report the synthesis and the characterization of the biomass activated carbon (AC)-decorated cobalt oxide (Co3O4) nanocomposites for solar-stimulated photocatalytic hydrogen production from sulphide wastewater. The Co3O4-AC nanocomposites were ultrasonically synthesized by using hydrothermally-grown spinel Co3O4 nanoflakes and biomass-derived AC nanoflakes. Co3O4-AC showed a nanobundle-like aggregated morphology, and exhibited a large specific surface area (~133 m2/g). Through utilizing Co3O4-AC as a photocatalyst for photocatalytic splitting of sulphide wastewater (0.2 M) under solar irradiance with 730 W/m2, an enhanced H2 production efficiency (~70 mL/h) was achieved owing to the synergic effects from 2-dimentionally configured Co3O4 and AC microstructures; i.e., large surface area of Co3O4 and high electrical conductivity of AC. These findings suggest the nanocomposites of Co3O4-AC to hold great promise for the green approach of photocatalytic wastewater splitting.
Collapse
Affiliation(s)
- Sankar Sekar
- Department of Semiconductor Science, Dongguk University-Seoul, Seoul, 04620, Republic of Korea; Quantum-functional Semiconductor Research Center, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - V Preethi
- Renewable Energy Lab., Hindustan Institute of Technology and Science, Chennai, 603103, Tamil Nadu, India.
| | - S Saravanan
- Department of Mechanical Engineering, K. Ramakrishnan College of Technology, Trichy, 621112, Tamil Nadu, India
| | - Deuk Young Kim
- Department of Semiconductor Science, Dongguk University-Seoul, Seoul, 04620, Republic of Korea; Quantum-functional Semiconductor Research Center, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Sejoon Lee
- Department of Semiconductor Science, Dongguk University-Seoul, Seoul, 04620, Republic of Korea; Quantum-functional Semiconductor Research Center, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
3
|
Development and Characterization of Composite Carbon Adsorbents with Photocatalytic Regeneration Ability: Application to Diclofenac Removal from Water. Catalysts 2021. [DOI: 10.3390/catal11020173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This paper presents results related to the development of a carbon composite intended for water purification. The aim was to develop an adsorbent that could be regenerated using light leading to complete degradation of pollutants and avoiding the secondary pollution caused by regeneration. The composites were prepared by hydrothermal carbonization of palm kernel shells, TiO2, and W followed by activation at 400 °C under N2 flow. To evaluate the regeneration using light, photocatalytic experiments were carried out under UV-A, UV-B, and visible lights. The materials were thoroughly characterized, and their performance was evaluated for diclofenac removal. A maximum of 74% removal was observed with the composite containing TiO2, carbon, and W (HCP25W) under UV-B irradiation and non-adjusted pH (~5). Almost similar results were observed for the material that did not contain tungsten. The best results using visible light were achieved with HCP25W providing 24% removal of diclofenac, demonstrating the effect of W in the composite. Both the composites had significant amounts of oxygen-containing functional groups. The specific surface area of HCP25W was about 3 m2g−1, while for HCP25, it was 160 m2g−1. Increasing the specific surface area using a higher activation temperature (600 °C) adversely affected diclofenac removal due to the loss of the surface functional groups. Regeneration of the composite under UV-B light led to a complete recovery of the adsorption capacity. These results show that TiO2- and W-containing carbon composites are interesting materials for water treatment and they could be regenerated using photocatalysis.
Collapse
|
4
|
Enesca A. Enhancing the Photocatalytic Activity of SnO 2-TiO 2 and ZnO-TiO 2 Tandem Structures Toward Indoor Air Decontamination. Front Chem 2020; 8:583270. [PMID: 33324610 PMCID: PMC7723902 DOI: 10.3389/fchem.2020.583270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/16/2020] [Indexed: 12/29/2022] Open
Abstract
ZnO-TiO2 and SnO2-TiO2 tandem structures were developed using the doctor blade technique. It was found that by employing organic hydrophilic and hydrophobic as additives into the precursor it is possible to tailor the film density and morphology with direct consequences on the photocatalytic activity of the tandem structures. The highest photocatalytic efficiency corresponds to ZnO-TiO2 and can reach 74.04% photocatalytic efficiency toward acetaldehyde when a hydrophilic additive is used and 70.93% when a hydrophobic additive is employed. The snO2-TiO2 tandem structure presents lower photocatalytic properties (61.35 % when the hydrophilic additive is used) with a constant rate reaction of 0.07771 min-1.
Collapse
Affiliation(s)
- Alexandru Enesca
- Product Design, Mechatronics and Environmental Department, Transilvania University of Brasov, Braşov, Romania
| |
Collapse
|
5
|
Chen Y, Wang Y, Zhou X, Zhao Y, Peng W. Defected graphene as effective co-catalyst of CdS for enhanced photocatalytic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26810-26816. [PMID: 32378109 DOI: 10.1007/s11356-020-09066-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Synthesis of highly efficient photocatalysts for energy and environment catalysis is still a big challenge in the materials field. Cadmium sulfide (CdS) is a promising visible light-driven photocatalyst, which can be composited with co-catalysts to increase its photo-activity and stability. In this study, a kind of graphene material with abundant structure defects (D-rGO) is synthesized by a two-step annealing process with nitrogen-doped rGO (N-rGO) as an intermediate. The high-temperature annealing could remove the doped heteroatoms to form structure defects with five or seven carbon atoms. The D-rGO is then used as co-catalyst for the modification of CdS nanoparticles, and enhanced photocatalytic activities could be obtained. A large hydrogen evolution rate of 102.7 μmol h-1 g-1 is achieved, which is also effective for 4-nitrophenol reduction with a rate constant of 0.168 min-1. The novel CdS/D-rGO composite contains no noble metals and could be used as multi-functional photocatalysts, thus should has great potential in the photocatalysis field.
Collapse
Affiliation(s)
- Ying Chen
- Department of Chemical Engineering, Renai College of Tianjin University, Tianjin, 301636, China
| | - Yue Wang
- Department of Chemical Engineering, Renai College of Tianjin University, Tianjin, 301636, China
| | - Xiaohan Zhou
- Department of Chemical Engineering, Renai College of Tianjin University, Tianjin, 301636, China
| | - Yang Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300050, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300050, China.
| |
Collapse
|
6
|
Priyanka RN, Joseph S, Abraham T, Plathanam NJ, Mathew B. Rapid sunlight-driven mineralisation of dyes and fungicide in water by novel sulphur-doped graphene oxide/Ag 3VO 4 nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9604-9618. [PMID: 31925685 DOI: 10.1007/s11356-019-07569-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
A semiconductor photocatalyst was prepared in facile, standard conditions by integrating 1% metal-free, sulphur-doped graphene oxide (sGO) as cocatalyst and Ag3VO4 as photocatalyst and characterised via spectroscopic, microscopic and voltammetric techniques. The catalytic activity was performed on notable water pollutants like textile dyes and fungicide employing various techniques. Cationic dyes such as methylene blue and rhodamine B were degraded > 99% with above 90% organic carbon content removal indicating total mineralisation while anionic dyes were degraded 75-80% in 1 h. For the first time, a dithiocarbamate fungicide thiram is degraded to give thiourea as a product in 1 h. Photocatalysis follows pseudo-first order kinetics with rate 3.67, 49.50 and 3.19 times higher than Ag3VO4, sGO and GO-Ag3VO4 respectively with excellent stability and recyclability. One percent sGO aided excellent carrier separation boosted by electrons and surface defects from sGO, morphology and n-n heterojunction formation. The catalyst efficiently removed 82.8% of the total organic carbon content of a real water sample from the textile mill under 2-h sunlight irradiation.
Collapse
Affiliation(s)
- Ragam N Priyanka
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Subi Joseph
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Thomas Abraham
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Neena J Plathanam
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Beena Mathew
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| |
Collapse
|
7
|
Gerber IC, Serp P. A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chem Rev 2019; 120:1250-1349. [DOI: 10.1021/acs.chemrev.9b00209] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Iann C. Gerber
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, F-31077 Toulouse, France
| | - Philippe Serp
- LCC-CNRS, Université de Toulouse, UPR 8241 CNRS, INPT, 31400 Toulouse, France
| |
Collapse
|
8
|
Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts 2019. [DOI: 10.3390/catal9030276] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Photocatalytic water splitting is a sustainable technology for the production of clean fuel in terms of hydrogen (H2). In the present study, hydrogen (H2) production efficiency of three promising photocatalysts (titania (TiO2-P25), graphitic carbon nitride (g-C3N4), and cadmium sulfide (CdS)) was evaluated in detail using various sacrificial agents. The effect of most commonly used sacrificial agents in the recent years, such as methanol, ethanol, isopropanol, ethylene glycol, glycerol, lactic acid, glucose, sodium sulfide, sodium sulfite, sodium sulfide/sodium sulfite mixture, and triethanolamine, were evaluated on TiO2-P25, g-C3N4, and CdS. H2 production experiments were carried out under simulated solar light irradiation in an immersion type photo-reactor. All the experiments were performed without any noble metal co-catalyst. Moreover, photolysis experiments were executed to study the H2 generation in the absence of a catalyst. The results were discussed specifically in terms of chemical reactions, pH of the reaction medium, hydroxyl groups, alpha hydrogen, and carbon chain length of sacrificial agents. The results revealed that glucose and glycerol are the most suitable sacrificial agents for an oxide photocatalyst. Triethanolamine is the ideal sacrificial agent for carbon and sulfide photocatalyst. A remarkable amount of H2 was produced from the photolysis of sodium sulfide and sodium sulfide/sodium sulfite mixture without any photocatalyst. The findings of this study would be highly beneficial for the selection of sacrificial agents for a particular photocatalyst.
Collapse
|
9
|
Photocatalytic degradation of phenol wastewater over Z-scheme g-C3N4/CNT/BiVO4 heterostructure photocatalyst under solar light irradiation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.160] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Kharissova OV, Kharisov BI, Oliva González CM. Carbon–Carbon Allotropic Hybrids and Composites: Synthesis, Properties, And Applications. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05857] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Oxana V. Kharissova
- Universidad Autónoma de Nuevo León, Ave. Universidad
s/n, San Nicolás de los Garza, N.L. México C.P. 66455
| | - Boris I. Kharisov
- Universidad Autónoma de Nuevo León, Ave. Universidad
s/n, San Nicolás de los Garza, N.L. México C.P. 66455
| | - Cesar M. Oliva González
- Universidad Autónoma de Nuevo León, Ave. Universidad
s/n, San Nicolás de los Garza, N.L. México C.P. 66455
| |
Collapse
|
11
|
Preparation of Ag-doped Bi5O7I composites with enhanced visible-light-induced photocatalytic performance. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03763-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Xu X, Pan L, Zhang X, Wang L, Zou J. Rational Design and Construction of Cocatalysts for Semiconductor-Based Photo-Electrochemical Oxygen Evolution: A Comprehensive Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801505. [PMID: 30693190 PMCID: PMC6343073 DOI: 10.1002/advs.201801505] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/14/2018] [Indexed: 05/21/2023]
Abstract
Photo-electrochemical (PEC) water splitting, as an essential and indispensable research branch of solar energy applications, has achieved increasing attention in the past decades. Between the two photoelectrodes, the photoanodes for PEC water oxidation are mostly studied for the facile selection of n-type semiconductors. Initially, the efficiency of the PEC process is rather limited, which mainly results from the existing drawbacks of photoanodes such as instability and serious charge-carrier recombination. To improve PEC performances, researchers gradually focus on exploring many strategies, among which engineering photoelectrodes with suitable cocatalysts is one of the most feasible and promising methods to lower reaction obstacles and boost PEC water splitting ability. Here, the basic principles, modules of the PEC system, evaluation parameters in PEC water oxidation reactions occurring on the surface of photoanodes, and the basic functions of cocatalysts on the promotion of PEC performance are demonstrated. Then, the key progress of cocatalyst design and construction applied to photoanodes for PEC oxygen evolution is emphatically introduced and the influences of different kinds of water oxidation cocatalysts are elucidated in detail. Finally, the outlook of highly active cocatalysts for the photosynthesis process is also included.
Collapse
Affiliation(s)
- Xiao‐Ting Xu
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| | - Li Wang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| | - Ji‐Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| |
Collapse
|
13
|
Li S, Hu S, Jiang W, Liu Y, Zhou Y, Liu J, Wang Z. Facile synthesis of cerium oxide nanoparticles decorated flower-like bismuth molybdate for enhanced photocatalytic activity toward organic pollutant degradation. J Colloid Interface Sci 2018; 530:171-178. [DOI: 10.1016/j.jcis.2018.06.084] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
|
14
|
Xu J, Feng B, Wang Y, Qi Y, Niu J, Chen M. BiOCl Decorated NaNbO 3 Nanocubes: A Novel p-n Heterojunction Photocatalyst With Improved Activity for Ofloxacin Degradation. Front Chem 2018; 6:393. [PMID: 30333968 PMCID: PMC6175997 DOI: 10.3389/fchem.2018.00393] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/14/2018] [Indexed: 11/13/2022] Open
Abstract
BiOCl/NaNbO3 p-n heterojunction photocatalysts with significantly improved photocatalytic performance were fabricated by a facile in-situ growth method. The obtained BiOCl/NaNbO3 samples were characterized by UV-vis absorption spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), photocurrent (PC) and photoluminescence spectroscopy (PL). The photocatalytic activity of the BiOCl/NaNbO3 samples was investigated by the degradation of a typical antibiotic Ofloxacin (OFX). The experimental results showed that BiOCl/NaNbO3 composites exhibited much higher photocatalytic activity for OFX degradation compared to pure NaNbO3 and BiOCl. The degradation percent of OFX reached 90% within 60 min, and the apparent rate constant was about 8 times as that of pure NaNbO3 and BiOCl. The improved activity can be attributed to the formation of p-n junction between NaNbO3 and BiOCl. The formed p-n junction facilitated the separation of photogenerated holes and electrons, thereby enhancing photocatalytic activity. In addition, the composite photocatalyst showed satisfactory stability for the degradation of OFX. Due to the simple synthesis process, high photocatalytic activity, and the good recyclability of these composite photocatalysts, the results of this study would provide a good example for the rational design of other highly efficient heterojunction photocatalytic materials.
Collapse
Affiliation(s)
- Jingjing Xu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials, Nanjing University of Information Science and Technology, Nanjing, China
| | - Bingbing Feng
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials, Nanjing University of Information Science and Technology, Nanjing, China
| | - Ying Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yadi Qi
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials, Nanjing University of Information Science and Technology, Nanjing, China
| | - Junfeng Niu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials, Nanjing University of Information Science and Technology, Nanjing, China
| |
Collapse
|
15
|
He R, Xu D, Cheng B, Yu J, Ho W. Review on nanoscale Bi-based photocatalysts. NANOSCALE HORIZONS 2018; 3:464-504. [PMID: 32254135 DOI: 10.1039/c8nh00062j] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanoscale Bi-based photocatalysts are promising candidates for visible-light-driven photocatalytic environmental remediation and energy conversion. However, the performance of bulk bismuthal semiconductors is unsatisfactory. Increasing efforts have been focused on enhancing the performance of this photocatalyst family. Many studies have reported on component adjustment, morphology control, heterojunction construction, and surface modification. Herein, recent topics in these fields, including doping, changing stoichiometry, solid solutions, ultrathin nanosheets, hierarchical and hollow architectures, conventional heterojunctions, direct Z-scheme junctions, and surface modification of conductive materials and semiconductors, are reviewed. The progress in the enhancement mechanism involving light absorption, band structure tailoring, and separation and utilization of excited carriers, is also introduced. The challenges and tendencies in the studies of nanoscale Bi-based photocatalysts are discussed and summarized.
Collapse
Affiliation(s)
- Rongan He
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | | | | | | | | |
Collapse
|
16
|
Li S, Hu S, Jiang W, Liu Y, Liu Y, Zhou Y, Mo L, Liu J. Ag 3VO 4 Nanoparticles Decorated Bi 2O 2CO 3 Micro-Flowers: An Efficient Visible-Light-Driven Photocatalyst for the Removal of Toxic Contaminants. Front Chem 2018; 6:255. [PMID: 30013966 PMCID: PMC6036280 DOI: 10.3389/fchem.2018.00255] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
Semiconductor-based photocatalysis is of great potential for tackling the environmental pollution. Herein, a novel hierarchical heterostructure of Bi2O2CO3 micro-flowers in-situ decorated with Ag3VO4 nanoparticles was developed by a facile method. Various characterization techniques have been employed to study the physical and chemical property of the novel catalyst. The novel catalyst was utilized for the photocatalytic removal of industrial dyes (rhodamine B, methyl orange) and tetracycline antibiotic under visible-light irradiation. The results indicated that Ag3VO4/Bi2O2CO3 heterojunctions showed a remarkably enhanced activity, significantly higher than those of bare Ag3VO4, Bi2O2CO3, and the physical mixture of Ag3VO4 and Bi2O2CO3 samples. This could be ascribed to an enhanced visible-light harvesting capacity and effective separation of charge carriers by virtue of the construction of hierarchical Ag3VO4/Bi2O2CO3 heterojunction. Moreover, Ag3VO4/Bi2O2CO3 also possesses an excellent cycling stability. The outstanding performance of Ag3VO4/Bi2O2CO3 in removal of toxic pollutants indicates the potential of Ag3VO4/Bi2O2CO3 in real environmental remediation. Highlights Novel architectures of Ag3VO4 nanoparticles modified Bi2O2CO3 micro-flowers were constructed.Novel Ag3VO4/Bi2O2CO3 exhibited excellent photocatalytic activity and stability.Ag3VO4/Bi2O2CO3 heterojunctions significantly promote the charge separation.
Collapse
Affiliation(s)
- Shijie Li
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Shiwei Hu
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Wei Jiang
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Yu Liu
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Yanping Liu
- Department of Environmental Engineering, Zhejiang Ocean University, Zhoushan, China
| | - Yingtang Zhou
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Liuye Mo
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Jianshe Liu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|
17
|
Acharya R, Naik B, Parida K. Cr(VI) remediation from aqueous environment through modified-TiO 2-mediated photocatalytic reduction. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1448-1470. [PMID: 29977679 PMCID: PMC6009310 DOI: 10.3762/bjnano.9.137] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/19/2018] [Indexed: 05/21/2023]
Abstract
Cr(VI) exhibits cytotoxic, mutagenic and carcinogenic properties; hence, effluents containing Cr(VI) from various industrial processes pose threat to aquatic life and downstream users. Various treatment techniques, such as chemical reduction, ion exchange, bacterial degradation, adsorption and photocatalysis, have been exploited for remediation of Cr(VI) from wastewater. Among these, photocatalysis has recently gained considerable attention. The applications of photocatalysis, such as water splitting, CO2 reduction, pollutant degradation, organic transformation reactions, N2 fixation, etc., towards solving the energy crisis and environmental issues are briefly discussed in the Introduction of this review. The advantages of TiO2 as a photocatalyst and the importance of its modification for photocatalytic reduction of Cr(VI) has also been addressed. In this review, the photocatalytic activity of TiO2 after modification with carbon-based advanced materials, metal oxides, metal sulfides and noble metals towards reduction of Cr(VI) was evaluated and compared with that of bare TiO2. The photoactivity of dye-sensitized TiO2 for reduction of Cr(VI) was also discussed. The mechanism for enhanced photocatalytic activity was highlighted and attributed to the resultant properties, namely, effective separation of photoinduced charge carriers, extension of the light absorption range and intensity, increase of the surface active sites, and higher photostability. Advantages and limitations for photoreduction of Cr(VI) over modified TiO2 are depicted in the Conclusion. The various challenges that restrict the technology from practical applications in remediation of Cr(VI) from wastewater were addressed in the Conclusion section as well. The future perspectives of the field presented in this review are focused on the development of whole-solar-spectrum responsive, TiO2-coupled photocatalysts which provide efficient photocatalytic reduction of Cr(VI) along with their good recoverability and recyclability.
Collapse
Affiliation(s)
- Rashmi Acharya
- Centre for Nano Science and Nano Technology, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030, India
| | - Brundabana Naik
- Centre for Nano Science and Nano Technology, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030, India
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030, India
| |
Collapse
|
18
|
Li S, Hu S, Jiang W, Liu Y, Liu Y, Zhou Y, Mo L, Liu J. Ag 2WO 4 nanorods decorated with AgI nanoparticles: Novel and efficient visible-light-driven photocatalysts for the degradation of water pollutants. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1308-1316. [PMID: 29765809 PMCID: PMC5942385 DOI: 10.3762/bjnano.9.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/29/2018] [Indexed: 05/12/2023]
Abstract
To develop efficient and stable visible-light-driven (VLD) photocatalysts for pollutant degradation, we synthesized novel heterojunction photocatalysts comprised of AgI nanoparticle-decorated Ag2WO4 nanorods via a facile method. Various characterization techniques, including XRD, SEM, TEM, EDX, and UV-vis DRS were used to investigate the morphology and optical properties of the as-prepared AgI/Ag2WO4 catalyst. With AgI acting as the cocatalyst, the resulting AgI/Ag2WO4 heterostructure shows excellent performance in degrading toxic, stable pollutants such as rhodamine B (RhB), methyl orange (MO) and para-chlorophenol (4-CP). The high performance is attributed to the enhanced visible-light absorption properties and the promoted separation efficiency of charge carriers through the formation of the heterojunction between AgI and Ag2WO4. Additionally, AgI/Ag2WO4 exhibits durable stability. The active species trapping experiment reveals that active species (O2•- and h+) dominantly contribute to RhB degradation. The AgI/Ag2WO4 heterojunction photocatalyst characterized in this work holds great potential for remedying environmental issues due to its simple preparation method and excellent photocatalytic performance.
Collapse
Affiliation(s)
- Shijie Li
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China
| | - Shiwei Hu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China
| | - Wei Jiang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China
| | - Yanping Liu
- Department of Environmental Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China
| | - Yu Liu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China
| | - Yingtang Zhou
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China
| | - Liuye Mo
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China
| | - Jianshe Liu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
19
|
Zhang M, Qin J, Yu P, Zhang B, Ma M, Zhang X, Liu R. Facile synthesis of a ZnO-BiOI p-n nano-heterojunction with excellent visible-light photocatalytic activity. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:789-800. [PMID: 29600140 PMCID: PMC5852526 DOI: 10.3762/bjnano.9.72] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/30/2018] [Indexed: 05/31/2023]
Abstract
In this paper, an efficient method to produce a ZnO/BiOI nano-heterojunction is developed by a facile solution method followed by calcination. By tuning the ratio of Zn/Bi, the morphology varies from nanoplates, flowers to nanoparticles. The heterojunction formed between ZnO and BiOI decreases the recombination rate of photogenerated carriers and enhances the photocatalytic activity of ZnO/BiOI composites. The obtained ZnO/BiOI heterostructured nanocomposites exhibit a significant improvement in the photodegradation of rhodamine B under visible light (λ ≥ 420 nm) irradiation as compared to single-phase ZnO and BiOI. A sample with a Zn/Bi ratio of 3:1 showed the highest photocatalytic activity (≈99.3% after 100 min irradiation). The photodegradation tests indicated that the ZnO/BiOI heterostructured nanocomposites not only exhibit remarkably enhanced and sustainable photocatalytic activity, but also show good recyclability. The excellent photocatalytic activity could be attributed to the high separation efficiency of the photoinduced electron-hole pairs as well as the high specific area.
Collapse
Affiliation(s)
- Mengyuan Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jiaqian Qin
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
- Research Unit of Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok, Thailand
| | - Pengfei Yu
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Bing Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Mingzhen Ma
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Xinyu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Riping Liu
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| |
Collapse
|