1
|
Jayachandran A, Parween S, Asthana A, Kar S. Microfluidics-Based Blood Typing Devices: An In-Depth Overview. ACS APPLIED BIO MATERIALS 2024; 7:59-79. [PMID: 38115212 DOI: 10.1021/acsabm.3c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Identification of correct blood types holds paramount importance in understanding the pathophysiological parameters of patients, therapeutic interventions, and blood transfusion. Considering the wide applications of blood typing, the requirement of centralized laboratory facilities is not well suited on many occasions. In this context, there has been a significant development of such blood typing devices on different microfluidic platforms. The advantages of these microfluidic devices offer easy, rapid test protocols, which could potentially be adapted in resource-limited settings and thereby can truly lead to the decentralization of testing facilities. The advantages of pump-free liquid transport (i.e., low power consumption) and biodegradability of paper substrates (e.g., reduction in medical wastes) make it a more preferred platform in comparison to other microfluidic devices. However, these devices are often coupled with some inherent challenges, which limit their potential to be used on a mass commercial scale. In this context, our Review offers a succinct summary of the recent development, especially to understand the importance of underlying facets for long-term sustainability. Our Review also delineates the role of integration with digital technologies to minimize errors in interpreting the readouts.
Collapse
Affiliation(s)
- Arjun Jayachandran
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Shahila Parween
- MNR Foundation for Research & Innovations (MNR-FRI), MNR Medical College & Hospital, MNR Nagar, Narsapur Road, Sangareddy 502294, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Shantimoy Kar
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| |
Collapse
|
2
|
Gole MT, Dronadula MT, Aluru NR, Murphy CJ. Immunoglobulin adsorption and film formation on mechanically wrinkled and crumpled surfaces at submonolayer coverage. NANOSCALE ADVANCES 2023; 5:2085-2095. [PMID: 36998663 PMCID: PMC10044874 DOI: 10.1039/d3na00033h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Understanding protein adsorption behavior on rough and wrinkled surfaces is vital to applications including biosensors and flexible biomedical devices. Despite this, there is a dearth of study on protein interaction with regularly undulating surface topographies, particularly in regions of negative curvature. Here we report nanoscale adsorption behavior of immunoglobulin M (IgM) and immunoglobulin G (IgG) on wrinkled and crumpled surfaces via atomic force microscopy (AFM). Hydrophilic plasma treated poly(dimethylsiloxane) (PDMS) wrinkles with varying dimensions exhibit higher surface coverage of IgM on wrinkle peaks over valleys. Negative curvature in the valleys is determined to reduce protein surface coverage based both on an increase in geometric hindrance on concave surfaces, and reduced binding energy as calculated in coarse-grained molecular dynamics simulations. The smaller IgG molecule in contrast shows no observable effects on coverage from this degree of curvature. The same wrinkles with an overlayer of monolayer graphene show hydrophobic spreading and network formation, and inhomogeneous coverage across wrinkle peaks and valleys attributed to filament wetting and drying effects in the valleys. Additionally, adsorption onto uniaxial buckle delaminated graphene shows that when wrinkle features are on the length scale of the protein diameter, hydrophobic deformation and spreading do not occur and both IgM and IgG molecules retain their dimensions. These results demonstrate that undulating wrinkled surfaces characteristic of flexible substrates can have significant effects on protein surface distribution with potential implications for design of materials for biological applications.
Collapse
Affiliation(s)
- Matthew T Gole
- Department of Chemistry, University of Illinois Urbana-Champaign Urbana IL 61801 USA
| | - Mohan T Dronadula
- Walker Department of Mechanical Engineering, The University of Texas at Austin Austin Texas 78712 USA
| | - Narayana R Aluru
- Walker Department of Mechanical Engineering, The University of Texas at Austin Austin Texas 78712 USA
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
3
|
Heidari-Bafroui H, Kumar A, Charbaji A, Smith W, Rahmani N, Anagnostopoulos C, Faghri M. A Parametric Study on a Paper-Based Bi-Material Cantilever Valve. MICROMACHINES 2022; 13:mi13091502. [PMID: 36144125 PMCID: PMC9506191 DOI: 10.3390/mi13091502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/01/2023]
Abstract
The novel paper-based Bi-Material Cantilever (B-MaC) valve allows the autonomous loading and control of multiple fluid reagents which contributes to the accurate operation of paper-based microfluidic devices utilized for biological and chemical sensing applications. In this paper, an extensive parametric study is presented to evaluate the effects of key geometric parameters of the valve, such as paper direction, cantilever width, paper type, tape type, and sample volume, in addition to the effects of relative humidity and temperature on the functionality of the B-MaC and to provide a better understanding of the rate of fluid flow and resulting deflection of the cantilever. Machine direction, cantilever width, paper type, and tape type were found to be important parameters that affect the B-MAC's activation time. It was also observed that the rate of fluid imbibition in the B-MaC is considerably affected by change in humidity for high (55 °C) and low (25 °C) temperatures, while humidity levels have no significant effect during imbibition in the B-MaC at an ambient temperature of 45 °C. It was also found that a minimum distance of 4 mm is required between the B-MaC and the stationary component to prevent accidental activation of the B-MaC prior to sample insertion when relative humidity is higher than 90% and temperature is lower than 35 °C. The rate of fluid imbibition that determines the wetted length of the B-MaC and the final deflection of the cantilever are critical in designing and fabricating point-of-care microfluidic paper-based devices. The B-MaC valve can be utilized in a fluidic circuit to sequentially load several reagents, in addition to the sample to the detection area.
Collapse
|
4
|
Role of Paper-Based Sensors in Fight against Cancer for the Developing World. BIOSENSORS 2022; 12:bios12090737. [PMID: 36140122 PMCID: PMC9496559 DOI: 10.3390/bios12090737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022]
Abstract
Cancer is one of the major killers across the globe. According to the WHO, more than 10 million people succumbed to cancer in the year 2020 alone. The early detection of cancer is key to reducing the mortality rate. In low- and medium-income countries, the screening facilities are limited due to a scarcity of resources and equipment. Paper-based microfluidics provide a platform for a low-cost, biodegradable micro-total analysis system (µTAS) that can be used for the detection of critical biomarkers for cancer screening. This work aims to review and provide a perspective on various available paper-based methods for cancer screening. The work includes an overview of paper-based sensors, the analytes that can be detected and the detection, and readout methods used.
Collapse
|
5
|
Simultaneous phenotyping of five Rh red blood cell antigens on a paper-based analytical device combined with deep learning for rapid and accurate interpretation. Anal Chim Acta 2022; 1207:339807. [DOI: 10.1016/j.aca.2022.339807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/21/2022]
|
6
|
Wang Z, Zhao J, Xu X, Guo L, Xu L, Sun M, Hu S, Kuang H, Xu C, Li A. An Overview for the Nanoparticles-Based Quantitative Lateral Flow Assay. SMALL METHODS 2022; 6:e2101143. [PMID: 35041285 DOI: 10.1002/smtd.202101143] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Indexed: 06/14/2023]
Abstract
The development of the lateral flow assay (LFA) has received much attention in both academia and industry because of their broad applications to food safety, environmental monitoring, clinical diagnosis, and so forth. The user friendliness, low cost, and easy operation are the most attractive advantages of the LFA. In recent years, quantitative detection has become another focus of LFA development. Here, the most recent studies of quantitative LFAs are reviewed. First, the principles and corresponding formats of quantitative LFAs are introduced. In the biomaterial and nanomaterial sections, the detection, capture, and signal amplification biomolecules and the optical, fluorescent, luminescent, and magnetic labels used in LFAs are described. The invention of dedicated strip readers has drawn further interest in exploiting the better performance of LFAs. Therefore, next, the development of dedicated reader devices is described and the usefulness and specifications of these devices for LFAs are discussed. Finally, the applications of LFAs in the detection of metal ions, biotoxins, pathogenic microorganisms, veterinary drugs, and pesticides in the fields of food safety and environmental health and the detection of nucleic acids, biomarkers, and viruses in clinical analyses are summarized.
Collapse
Affiliation(s)
- Zhongxing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Jing Zhao
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, No. 11, Baiwanzhuang Street, Beijing, 100037, P. R. China
| |
Collapse
|
7
|
Paper based analytical devices for blood grouping: a comprehensive review. Biomed Microdevices 2021; 23:34. [PMID: 34213635 DOI: 10.1007/s10544-021-00569-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
The clinical importance of blood group (BG) antigens is related to their ability to induce immune antibodies that can cause hemolysis. Yet, ABO and D (Rh) are still considered to be the key antigens for healthy blood transfusion and secondary antigens are the next priority. Serological typing is the most widely used typing method. Rapid and accurate blood grouping plays an important role in some clinical conditions, rather than conventional techniques. Hence, developing a simple and economical model for rapid blood grouping would facilitate these tests. In recent decades, paper-based microfluidics such as μPADs has gained much interest in wide application areas such as point-of-care diagnostic. In this study, we evaluated μPADs that are performed for blood grouping and its recent progress. A comprehensive literature search was performed using databases including PUBMED, SCOPUS, Web of Science and Google Scholar. Keywords were blood grouping or typing, paper analytical device, rapid test, etc. After investigation of search results, 16 papers from 2010 to 2020 were included. Further information in detail was classified in Table 1. Generally, two principles for blood typing μPADs are introduced. The lateral chromatographic flow method and the vertical flow-through method that detects BG in a visual-based manner. To detect results with acceptable clarity many factors and challenges like paper, blood sample, buffer, Ab and RBC interaction and also μPADs stability need to be considered, which are discussed. In conclusion, the simplicity, stability, cheapness, portability and biocompatibility of μPADs for blood grouping confirming its utility and also they have the capability to robust, universal blood-grouping platform. Table 1 Summary of blood grouping tests using paper-based analytical devices Antigens Type of diagnosis Validation method Sample No Accuracy Action time Paper type Stability Sample dilution Buffer Ref A, B, Rh Forward volunteers records 5 - - Whatman No. 4 - 1/2 PBS* (Khan et al. 2010) A, B, Rh Forward gel assay test and conventional slide test 100 100% 1 min Whatman No. 4 and Kleeenex paper towel 7 Days in 4 °C 1/1 NSS (Al-Tamimi et al. 2012) A, B, Rh Forward gel card assay 99 100% 20 Sec + Washing Kleeenex paper towel - 1/1 NSS (Li et al. 2012) A, B, Rh Forward - - - - Kleeenex paper towel - 45/100 PSS (Li et al. 2013) A, B, Rh Forward gel card assay 98 100% 1.5 min Kleeenex paper towel - 85/100 PBS (Guan et al. 2014b) C, E, c, e, K, Jka, Jkb, M, N, S, P1, and Lea Forward gel card assay 266 100% - Kleeenex paper towel - 1/1 NSS (Li et al. 2014b) A, B, Rh Forward and Reverse conventional slide test 96 ≈ 91% 10 min Whatman No. 1 21 Days in 4 °C 1/2 NSS (Noiphung et al. 2015) C, c, E, e, K, k, Fya, Fyb, Jka, Jkb, M, N, S and s, P1, Lea and Leb Forward - 478 - - Kleeenex paper towel - 1/1 NSS, PBS (Then et al. 2015) A, B Forward and Reverse conventional slide test 76 100% 5-8 min Whatman No. 4 38 Days in 4 °C 1/4, 1/1 NSS (Songjaroen and Laiwattanapaisal 2016) D, K Forward volunteers records 210 - 7.5 min Kleenex paper towel - 1/1 NSS (Yeow et al. 2016) A, B, c, e, D, C, E, M, N, S, s, P1, Jka, Jkb, Lea, Leb, Fya, and Fyb Forward and Reverse gel card assay 3550 ≈100% 30 s Fiber glass and cotton linter 180 Days in 25 °C 45/100, 1/1 PBS (Zhang et al. 2017) A, B Forward conventional slide test 598 100% 3 min Whatman No. 113 14 Day in 4 °C 1/1 NSS (Songjaroen et al. 2018) A, B, Rh Forward conventional slide test - - 30 Sec + Washing Unrefined sisal paper - 1/2 NSS (Casals-Terré et al. 2019) A, B, Rh Forward - - - - Whatman No.1 - 1/1 NSS (Ansari et al. 2020) ABO & Rh Forward and Reverse conventional slide test - 100% Unrefined Eucalyptus papers - 1/2 NSS, PBS (Casals-Terré et al. 2020) A, B, Rh Forward - - - 30 Sec + Washing Whatman No. 4 modified with chitosan ≥ 100 days in 25 °C 1/1 NSS (Parween et al. 2020) *phosphate buffer saline, normal saline solution.
Collapse
|
8
|
Brilhante-da-Silva N, de Oliveira Sousa RM, Arruda A, Dos Santos EL, Marinho ACM, Stabeli RG, Fernandes CFC, Pereira SDS. Camelid Single-Domain Antibodies for the Development of Potent Diagnosis Platforms. Mol Diagn Ther 2021; 25:439-456. [PMID: 34146333 DOI: 10.1007/s40291-021-00533-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 11/26/2022]
Abstract
The distinct biophysical and pharmaceutical properties of camelid single-domain antibodies, referred to as VHHs or nanobodies, are associated with their nanometric dimensions, elevated stability, and antigen recognition capacity. These biomolecules can circumvent a number of diagnostic system limitations, especially those related to the size and stability of conventional immunoglobulins currently used in enzyme-linked immunosorbent assays and point-of-care, electrochemical, and imaging assays. In these formats, VHHs are directionally conjugated to different molecules, such as metallic nanoparticles, small peptides, and radioisotopes, which demonstrates their comprehensive versatility. Thus, the application of VHHs in diagnostic systems range from the identification of cancer cells to the detection of degenerative disease biomarkers, viral antigens, bacterial toxins, and insecticides. The improvements of sensitivity and specificity are among the central benefits resulting from the use of VHHs, which are indispensable parameters for high-quality diagnostics. Therefore, this review highlights the main biotechnological advances related to camelid single-domain antibodies and their use in in vitro and in vivo diagnostic approaches for human health.
Collapse
Affiliation(s)
- Nairo Brilhante-da-Silva
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
| | - Rosa Maria de Oliveira Sousa
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Andrelisse Arruda
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Eliza Lima Dos Santos
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Anna Carolina Machado Marinho
- Plataforma de Desenvolvimento de Anticorpos e Nanocorpos, Fundação Oswaldo Cruz, Fiocruz Ceará, Eusebio, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Rodrigo Guerino Stabeli
- Plataforma Bi-institucional de Medicina Translacional.Fundação Oswaldo Cruz-USP, Ribeirão Preto, São Paulo, Brazil
| | - Carla Freire Celedonio Fernandes
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
- Plataforma de Desenvolvimento de Anticorpos e Nanocorpos, Fundação Oswaldo Cruz, Fiocruz Ceará, Eusebio, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Soraya Dos Santos Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil.
- Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia, Porto Velho, Brazil.
| |
Collapse
|
9
|
Mazurkiewicz W, Podrażka M, Jarosińska E, Kappalakandy Valapil K, Wiloch M, Jönsson‐Niedziółka M, Witkowska Nery E. Paper‐Based Electrochemical Sensors and How to Make Them (Work). ChemElectroChem 2020. [DOI: 10.1002/celc.202000512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wojciech Mazurkiewicz
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Marta Podrażka
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Elżbieta Jarosińska
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | | | - Magdalena Wiloch
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | | | - Emilia Witkowska Nery
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|