1
|
Lei Y, Li B, Liao X, Xing X, Feng P, Zhao B, Xu S. Isolation and total synthesis of dysidone A: a new piperidone alkaloid from the marine sponge Dysidea sp. RSC Adv 2023; 13:29316-29319. [PMID: 37809021 PMCID: PMC10557106 DOI: 10.1039/d3ra06115a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023] Open
Abstract
A new piperidone alkaloid, dysidone A (1), was isolated from the marine sponge Dysidea sp. The structure of 1 was elucidated by the method of spectroscopic analysis. Compound 1 represented the first example of piperidone alkaloid isolated from the sponge of the genus Dysidea with the exocyclic double bond. Furthermore, the total synthesis of 1 was also carried out, which was started with piperidine proceeding a PIDA/I2-mediated α and β-C (sp3) -H bond dual oxygenation to achieve a 5-steps synthesis in a total yield of 10.6%. In addition, the anti-inflammatory activities of 1 and its derivative dysidone B (1d) were evaluated, which suggested that 1 showed weak anti-inflammatory activity.
Collapse
Affiliation(s)
- Yu Lei
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University Guangzhou 510632 P. R. China
| | - Boao Li
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University Guangzhou 510632 P. R. China
| | - Xiaojian Liao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University Guangzhou 510632 P. R. China
| | - Xiwen Xing
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University Guangzhou 510632 P. R. China
| | - Pengju Feng
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University Guangzhou 510632 P. R. China
| | - Bingxin Zhao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University Guangzhou 510632 P. R. China
| | - Shihai Xu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
2
|
Lagopati N, Pippa N, Gatou MA, Papadopoulou-Fermeli N, Gorgoulis VG, Gazouli M, Pavlatou EA. Marine-Originated Materials and Their Potential Use in Biomedicine. APPLIED SCIENCES 2023; 13:9172. [DOI: 10.3390/app13169172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 09/11/2023]
Abstract
Aquatic habitats cover almost 70% of the Earth, containing several species contributing to marine biodiversity. Marine and aquatic organisms are rich in chemical compounds that can be widely used in biomedicine (dentistry, pharmacy, cosmetology, etc.) as alternative raw biomaterials or in food supplements. Their structural characteristics make them promising candidates for tissue engineering approaches in regenerative medicine. Thus, seaweeds, marine sponges, arthropods, cnidaria, mollusks, and the biomaterials provided by them, such as alginate, vitamins, laminarin, collagen, chitin, chitosan, gelatin, hydroxyapatite, biosilica, etc., are going to be discussed focusing on the biomedical applications of these marine-originated biomaterials. The ultimate goal is to highlight the sustainability of the use of these biomaterials instead of conventional ones, mainly due to the antimicrobial, anti-inflammatory, anti-aging and anticancer effect.
Collapse
Affiliation(s)
- Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Nefeli Papadopoulou-Fermeli
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Vassilis G. Gorgoulis
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Clinical Molecular Pathology, Medical School, University of Dundee, Dundee DD1 9SY, UK
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| |
Collapse
|
3
|
Li J, Zhuang CL. Natural Indole Alkaloids from Marine Fungi: Chemical Diversity and Biological Activities. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1740050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022] Open
Abstract
The indole scaffold is one of the most important heterocyclic ring systems for pharmaceutical development, and serves as an active moiety in several clinical drugs. Fungi derived from marine origin are more liable to produce novel indole-containing natural products due to their extreme living environments. The indole alkaloids from marine fungi have drawn considerable attention for their unique chemical structures and significant biological activities. This review attempts to provide a summary of the structural diversity of marine fungal indole alkaloids including prenylated indoles, diketopiperazine indoles, bisindoles or trisindoles, quinazoline-containing indoles, indole-diterpenoids, and other indoles, as well as their known biological activities, mainly focusing on cytotoxic, kinase inhibitory, antiinflammatory, antimicrobial, anti-insecticidal, and brine shrimp lethal effects. A total of 306 indole alkaloids from marine fungi have been summarized, covering the references published from 1995 to early 2021, expecting to be beneficial for drug discovery in the future.
Collapse
Affiliation(s)
- Jiao Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chun-Lin Zhuang
- Department of Natural Product Chemistry, School of Pharmacy, The Second Military Medical University, Shanghai, People's Republic of China
- Department of Medicinal Chemistry, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| |
Collapse
|
4
|
Hu Y, Chen S, Yang F, Dong S. Marine Indole Alkaloids-Isolation, Structure and Bioactivities. Mar Drugs 2021; 19:658. [PMID: 34940657 PMCID: PMC8708922 DOI: 10.3390/md19120658] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Indole alkaloids are heterocyclic natural products with extensive pharmacological activities. As an important source of lead compounds, many clinical drugs have been derived from natural indole compounds. Marine indole alkaloids, from unique marine environments with high pressure, high salt and low temperature, exhibit structural diversity with various bioactivities, which attracts the attention of drug researchers. This article is a continuation of the previous two comprehensive reviews and covers the literature on marine indole alkaloids published from 2015 to 2021, with 472 new or structure-revised compounds categorized by sources into marine microorganisms, invertebrates, and plant-derived. The structures and bioactivities demonstrated in this article will benefit the synthesis and pharmacological activity study for marine indole alkaloids on their way to clinical drugs.
Collapse
Affiliation(s)
| | | | | | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (Y.H.); (S.C.); (F.Y.)
| |
Collapse
|
5
|
Zhang B, Zhang T, Xu J, Lu J, Qiu P, Wang T, Ding L. Marine Sponge-Associated Fungi as Potential Novel Bioactive Natural Product Sources for Drug Discovery: A Review. Mini Rev Med Chem 2021; 20:1966-2010. [PMID: 32851959 DOI: 10.2174/1389557520666200826123248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2020] [Revised: 06/26/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
Marine sponge-associated fungi are promising sources of structurally interesting and bioactive secondary metabolites. Great plenty of natural products have been discovered from spongeassociated fungi in recent years. Here reviewed are 571 new compounds isolated from marine fungi associated with sponges in 2010-2018. These molecules comprised eight different structural classes, including alkaloids, polyketides, terpenoids, meroterpenoids, etc. Moreover, most of these compounds demonstrated profoundly biological activities, such as antimicrobial, antiviral, cytotoxic, etc. This review systematically summarized the structural diversity, biological function, and future potential of these novel bioactive natural products for drug discovery.
Collapse
Affiliation(s)
- Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Ting Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Jianzhou Xu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Jian Lu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Panpan Qiu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Tingting Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| |
Collapse
|
6
|
Varijakzhan D, Loh JY, Yap WS, Yusoff K, Seboussi R, Lim SHE, Lai KS, Chong CM. Bioactive Compounds from Marine Sponges: Fundamentals and Applications. Mar Drugs 2021; 19:246. [PMID: 33925365 PMCID: PMC8146879 DOI: 10.3390/md19050246] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Marine sponges are sessile invertebrates that can be found in temperate, polar and tropical regions. They are known to be major contributors of bioactive compounds, which are discovered in and extracted from the marine environment. The compounds extracted from these sponges are known to exhibit various bioactivities, such as antimicrobial, antitumor and general cytotoxicity. For example, various compounds isolated from Theonella swinhoei have showcased various bioactivities, such as those that are antibacterial, antiviral and antifungal. In this review, we discuss bioactive compounds that have been identified from marine sponges that showcase the ability to act as antibacterial, antiviral, anti-malarial and antifungal agents against human pathogens and fish pathogens in the aquaculture industry. Moreover, the application of such compounds as antimicrobial agents in other veterinary commodities, such as poultry, cattle farming and domesticated cats, is discussed, along with a brief discussion regarding the mode of action of these compounds on the targeted sites in various pathogens. The bioactivity of the compounds discussed in this review is focused mainly on compounds that have been identified between 2000 and 2020 and includes the novel compounds discovered from 2018 to 2021.
Collapse
Affiliation(s)
- Disha Varijakzhan
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Jiun-Yan Loh
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia; (J.-Y.L.); (W.-S.Y.)
| | - Wai-Sum Yap
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia; (J.-Y.L.); (W.-S.Y.)
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Rabiha Seboussi
- Health Sciences Division, Al Ain Men’s College, Higher Colleges of Technology, Al Ain 17155, United Arab Emirates;
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates;
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates;
| | - Chou-Min Chong
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
7
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
8
|
Youssef FS, Alshammari E, Ashour ML. Bioactive Alkaloids from Genus Aspergillus: Mechanistic Interpretation of Their Antimicrobial and Potential SARS-CoV-2 Inhibitory Activity Using Molecular Modelling. Int J Mol Sci 2021; 22:1866. [PMID: 33668523 PMCID: PMC7918500 DOI: 10.3390/ijms22041866] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2021] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/23/2022] Open
Abstract
Genus Aspergillus represents a widely spread genus of fungi that is highly popular for possessing potent medicinal potential comprising mainly antimicrobial, cytotoxic and antioxidant properties. They are highly attributed to its richness by alkaloids, terpenes, steroids and polyketons. This review aimed to comprehensively explore the diverse alkaloids isolated and identified from different species of genus Aspergillus that were found to be associated with different marine organisms regarding their chemistry and biology. Around 174 alkaloid metabolites were reported, 66 of which showed important biological activities with respect to the tested biological activities mainly comprising antiviral, antibacterial, antifungal, cytotoxic, antioxidant and antifouling activities. Besides, in silico studies on different microbial proteins comprising DNA-gyrase, topoisomerase IV, dihydrofolate reductase, transcriptional regulator TcaR (protein), and aminoglycoside nucleotidyl transferase were done for sixteen alkaloids that showed anti-infective potential for better mechanistic interpretation of their probable mode of action. The inhibitory potential of compounds vs. Angiotensin-Converting Enzyme 2 (ACE2) as an important therapeutic target combating COVID-19 infection and its complication was also examined using molecular docking. Fumigatoside E showed the best fitting within the active sites of all the examined proteins. Thus, Aspergillus species isolated from marine organisms could afford bioactive entities combating infectious diseases.
Collapse
Affiliation(s)
- Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Elham Alshammari
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia;
| | - Mohamed L. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| |
Collapse
|
9
|
Meng ZH, Sun TT, Zhao GZ, Yue YF, Chang QH, Zhu HJ, Cao F. Marine-derived fungi as a source of bioactive indole alkaloids with diversified structures. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:44-61. [PMID: 37073395 PMCID: PMC10077242 DOI: 10.1007/s42995-020-00072-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/19/2020] [Accepted: 09/09/2020] [Indexed: 05/03/2023]
Abstract
Marine-derived fungi are well known as rich sources of bioactive natural products. Growing evidences indicated that indole alkaloids, isolated from a variety of marine-derived fungi, have attracted considerable attention for their diverse, challenging structural complexity and promising bioactivities, and therefore, indole alkaloids have potential to be pharmaceutical lead compounds. Systemic compilation of the relevant literature. In this review, we demonstrated a comprehensive overview of 431 new indole alkaloids from 21 genera of marine-derived fungi with an emphasis on their structures and bioactivities, covering literatures published during 1982-2019.
Collapse
Affiliation(s)
- Zhi-Hui Meng
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Tian-Tian Sun
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Guo-Zheng Zhao
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Yu-Fei Yue
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Qing-Hua Chang
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Hua-Jie Zhu
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Fei Cao
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| |
Collapse
|
10
|
Baranova AA, Alferova VA, Korshun VA, Tyurin AP. Antibiotics from Extremophilic Micromycetes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020; 46:903-971. [PMID: 33390684 PMCID: PMC7768999 DOI: 10.1134/s1068162020060023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/04/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/03/2022]
Abstract
Extremophilic microorganisms, which are capable of functioning normally at extremely high or low temperatures, pressure, and in other environmental conditions, have been in the focus of microbiologists' attention for several decades due to the biotechnological potential of enzymes inherent in extremophiles. These enzymes (also called extremozymes) are used in the production of food and detergents and other industries. At the same time, the inhabitants of extreme econiches remained almost unexplored for a long time in terms of the chemistry of natural compounds. In recent years, the emergence of new antibiotic-resistant strains of pathogens, which affect humans and animals has become a global problem. The problem is compounded by a strong slowdown in the development of new antibiotics. In search of new active substances and scaffolds for medical chemistry, researchers turn to unexplored natural sources. In recent years, there has been a sharp increase in the number of studies on secondary metabolites produced by extremophiles. From the discovery of penicillin to the present day, micromycetes, along with actinobacteria, are one of the most productive sources of antibiotic compounds for medicine and agriculture. Many authors consider extremophilic micromycetes as a promising source of small molecules with an unusual mechanism of action or significant structural novelty. This review summarizes the latest (for 2018-2019) experimental data on antibiotic compounds, which are produced by extremophilic micromycetes with various types of adaptation. Active metabolites are classified by the type of structure and biosynthetic origin. The data on the biological activity of the isolated metabolites are summarized.
Collapse
Affiliation(s)
- A. A. Baranova
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - V. A. Alferova
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| | - V. A. Korshun
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| | - A. P. Tyurin
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| |
Collapse
|
11
|
Vitale GA, Coppola D, Palma Esposito F, Buonocore C, Ausuri J, Tortorella E, de Pascale D. Antioxidant Molecules from Marine Fungi: Methodologies and Perspectives. Antioxidants (Basel) 2020; 9:E1183. [PMID: 33256101 PMCID: PMC7760651 DOI: 10.3390/antiox9121183] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/31/2022] Open
Abstract
The marine environment represents a prosperous existing resource for bioprospecting, covering 70% of the planet earth, and hosting a huge biodiversity. Advances in the research are progressively uncovering the presence of unknown microorganisms, which have evolved unique metabolic and genetic pathways for the production of uncommon secondary metabolites. Fungi have a leading role in marine bioprospecting since they represent a prolific source of structurally diverse bioactive metabolites. Several bioactive compounds from marine fungi have already been characterized including antibiotics, anticancer, antioxidants and antivirals. Nowadays, the search for natural antioxidant molecules capable of replacing those synthetic currently used, is an aspect that is receiving significant attention. Antioxidants can inactivate reactive oxygen and nitrogen species, preventing the insurgence of several degenerative diseases including cancer, autoimmune disorders, cardiovascular and neurodegenerative diseases. Moreover, they also find applications in different fields, including food preservation, healthcare and cosmetics. This review focuses on the production of antioxidants from marine fungi. We begin by proposing a survey of the available tools suitable for the evaluation of antioxidants, followed by the description of various classes of marine fungi antioxidants together with their extraction strategies. In addition, a view of the future perspectives and trends of these natural products within the "blue economy" is also presented.
Collapse
Affiliation(s)
- Giovanni Andrea Vitale
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
| | - Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (F.P.E.)
- Institute of Biosciences and BioResources (IBBR), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Fortunato Palma Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (F.P.E.)
| | - Carmine Buonocore
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
| | - Janardhan Ausuri
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
| | - Emiliana Tortorella
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
| | - Donatella de Pascale
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (F.P.E.)
| |
Collapse
|
12
|
Abstract
A new polyketide, solieritide A (1), along with six known ones (2-7), had been isolated from the red alga Solieria sp. The structures of these compounds were elucidated by spectroscopic analysis. The absolute configuration of 1 was determined by the method of X-ray diffraction. Compound 1 was a rare polyketide bearing benzopyrone ring fused with γ-butyrolactone. Compounds 2-7 were isolated from the red algae of genus Solieria for the first time. The antibacterial activities of 1-7 were also discussed.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| | - Xiao-Jian Liao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| | - Shi-Hai Xu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| | - Bing-Xin Zhao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
13
|
Xu K, Yuan XL, Li C, Li XD. Recent Discovery of Heterocyclic Alkaloids from Marine-Derived Aspergillus Species. Mar Drugs 2020; 18:E54. [PMID: 31947564 PMCID: PMC7024353 DOI: 10.3390/md18010054] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/27/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/19/2022] Open
Abstract
Nitrogen heterocycles have drawn considerable attention due to of their significant biological activities. The marine fungi residing in extreme environments are among the richest sources of these basic nitrogen-containing secondary metabolites. As one of the most well-known universal groups of filamentous fungi, marine-derived Aspergillus species produce a large number of structurally unique heterocyclic alkaloids. This review attempts to provide a comprehensive summary of the structural diversity and biological activities of heterocyclic alkaloids that are produced by marine-derived Aspergillus species. Herein, a total of 130 such structures that were reported from the beginning of 2014 through the end of 2018 are included, and 75 references are cited in this review, which will benefit future drug development and innovation.
Collapse
Affiliation(s)
- Kuo Xu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (K.X.); (X.-L.Y.)
| | - Xiao-Long Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (K.X.); (X.-L.Y.)
| | - Chen Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;
- Key Laboratory of marine biotechnology in Universities of Shandong (Ludong University), School of Life Sciences, Ludong University, Yantai 264025, China
| | - Xiao-Dong Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;
- Key Laboratory of marine biotechnology in Universities of Shandong (Ludong University), School of Life Sciences, Ludong University, Yantai 264025, China
| |
Collapse
|
14
|
Sun W, Wu W, Liu X, Zaleta-Pinet DA, Clark BR. Bioactive Compounds Isolated from Marine-Derived Microbes in China: 2009-2018. Mar Drugs 2019; 17:E339. [PMID: 31174259 PMCID: PMC6628246 DOI: 10.3390/md17060339] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022] Open
Abstract
This review outlines the research that was carried out regarding the isolation of bioactive compounds from marine-derived bacteria and fungi by China-based research groups from 2009-2018, with 897 publications being surveyed. Endophytic organisms featured heavily, with endophytes from mangroves, marine invertebrates, and marine algae making up more than 60% of the microbial strains investigated. There was also a strong focus on fungi as a source of active compounds, with 80% of publications focusing on this area. The rapid increase in the number of publications in the field is perhaps most notable, which have increased more than sevenfold over the past decade, and suggests that China-based researchers will play a major role in marine microbial natural products drug discovery in years to come.
Collapse
Affiliation(s)
- Weiwei Sun
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Wenhui Wu
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Xueling Liu
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Diana A Zaleta-Pinet
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
15
|
Lin JL, Liang YQ, Liao XJ, Yang JT, Li DC, Huang YL, Jiang ZH, Xu SH, Zhao BX. Acanthophoraine A, a new pyrrolidine alkaloid from the red alga Acanthophora spicifera. Nat Prod Res 2019; 34:2065-2070. [DOI: 10.1080/14786419.2019.1569008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jia-Li Lin
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| | - Yong-Qian Liang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| | - Xiao-Jian Liao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| | - Jian-Ting Yang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| | - Dai-Chun Li
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| | - Yu-Ling Huang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| | - Zhi-Hui Jiang
- Department of Pharmacy, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, P. R. China
| | - Shi-Hai Xu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| | - Bing-Xin Zhao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
16
|
Hamed AA, Abdel-Aziz MS, Abd El Hady FK. Antimicrobial and antioxidant activities of different extracts from Aspergillus unguis SPMD-EGY grown on different media. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2018; 42:29. [DOI: 10.1186/s42269-018-0027-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/01/2018] [Accepted: 11/06/2018] [Indexed: 09/02/2023]
|