1
|
Teixeira WKO, de Albuquerque DY, Zukerman-Schpector J, Seckler D, Rampon DS, Schwab RS. Copper-Mediated Intramolecular Interrupted CuAAC Selanylation. J Org Chem 2023. [PMID: 37467464 DOI: 10.1021/acs.joc.2c02893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
We, herein, describe a copper-mediated domino CuAAC intramolecular selanylation for the synthesis of unprecedented fused benzo[4,5][1,3]selenazolo[3,2-c][1,2,3]triazoles from 1,2-bis(2-azidoaryl)diselenides and terminal alkynes under microwave irradiation. This is the seminal method for the synthesis of these fused heterocycles, and it proceeds under mild conditions, tolerates several functional groups, and can be carried out using environmentally benign solvents such as dimethyl carbonate. This transformation has been successfully extended to TMS-protected alkynes and to bioactive alkynes. A plausible reaction mechanism is proposed based on several control experiments and previous reports.
Collapse
Affiliation(s)
- Wystan K O Teixeira
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos - UFSCar, Rodovia Washington Luís, km 235 - SP-310, São Carlos 13565-905, São Paulo, Brazil
| | - Danilo Yano de Albuquerque
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos - UFSCar, Rodovia Washington Luís, km 235 - SP-310, São Carlos 13565-905, São Paulo, Brazil
| | - Julio Zukerman-Schpector
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, Rodovia Washington Luís, km 235 - SP-310, São Carlos 13565-905, São Paulo, Brazil
| | - Diego Seckler
- Laboratory of Polymers and Catalysis (LaPoCa), Departamento de Química, Universidade Federal do Paraná - UFPR, P. O. Box 19061, Curitiba 81531-980, Paraná, Brazil
| | - Daniel S Rampon
- Laboratory of Polymers and Catalysis (LaPoCa), Departamento de Química, Universidade Federal do Paraná - UFPR, P. O. Box 19061, Curitiba 81531-980, Paraná, Brazil
| | - Ricardo S Schwab
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos - UFSCar, Rodovia Washington Luís, km 235 - SP-310, São Carlos 13565-905, São Paulo, Brazil
| |
Collapse
|
2
|
Podapangi SK, Jafarzadeh F, Mattiello S, Korukonda TB, Singh A, Beverina L, Brown TM. Green solvents, materials, and lead-free semiconductors for sustainable fabrication of perovskite solar cells. RSC Adv 2023; 13:18165-18206. [PMID: 37333793 PMCID: PMC10269851 DOI: 10.1039/d3ra01692g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Perovskite materials research has received unprecedented recognition due to its applications in photovoltaics, LEDs, and other large area low-cost electronics. The exceptional improvement in the photovoltaic conversion efficiency of Perovskite solar cells (PSCs) achieved over the last decade has prompted efforts to develop and optimize device fabrication technologies for the industrial and commercial space. However, unstable operation in outdoor environments and toxicity of the employed materials and solvents have hindered this proposition. While their optoelectronic properties are extensively studied, the environmental impacts of the materials and manufacturing methods require further attention. This review summarizes and discusses green and environment-friendly methods for fabricating PSCs, particularly non-toxic solvents, and lead-free alternatives. Greener solvent choices are surveyed for all the solar cell films, (i.e. electron and hole transport, semiconductor, and electrode layers) and their impact on thin film quality, morphology and device performance is explored. We also discuss lead content in perovskites, its environmental impact and sequestration routes, and progress in replacing lead with greener alternatives. This review provides an analysis of sustainable green routes in perovskite solar cell fabrication, discussing the impact of each layer in the device stack, via life cycle analysis.
Collapse
Affiliation(s)
- Suresh K Podapangi
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome-Tor Vergata via del Politecnico 1 00133 Rome Italy
| | - Farshad Jafarzadeh
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome-Tor Vergata via del Politecnico 1 00133 Rome Italy
| | - Sara Mattiello
- Department of Materials Science, State University of Milano-Bicocca Via Cozzi 55 I-20126 Milano Italy
| | - Tulja Bhavani Korukonda
- Department of Centre for Energy Studies, Indian Institute of Technology Delhi Hauz Khas New Delhi-110016 India
| | - Akash Singh
- Department of Mechanical Engineering and Materials Science, Duke University Durham NC 27708 USA
| | - Luca Beverina
- Department of Materials Science, State University of Milano-Bicocca Via Cozzi 55 I-20126 Milano Italy
| | - Thomas M Brown
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome-Tor Vergata via del Politecnico 1 00133 Rome Italy
| |
Collapse
|
3
|
Potential Nitrogen-Based Heterocyclic Compounds for Treating Infectious Diseases: A Literature Review. Antibiotics (Basel) 2022; 11:antibiotics11121750. [PMID: 36551407 PMCID: PMC9774632 DOI: 10.3390/antibiotics11121750] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Heterocyclic compounds are considered as one of the major and most diverse family of organic compounds. Nowadays, the demand for these compounds is increasing day-by-day due to their enormous synthetic and biological applications. These heterocyclic compounds have unique antibacterial activity against various Gram-positive and Gram-negative bacterial strains. This review covers the antibacterial activity of different heterocyclic compounds with nitrogen moiety. Some of the derivatives of these compounds show excellent antibacterial activity, while others show reasonable activity against bacterial strains. This review paper aims to bring and discuss the detailed information on the antibacterial activity of various nitrogen-based heterocyclic compounds. It will be helpful for the future evolution of diseases to synthesize new and effective drug molecules.
Collapse
|
4
|
Jordan A, Hall CGJ, Thorp LR, Sneddon HF. Replacement of Less-Preferred Dipolar Aprotic and Ethereal Solvents in Synthetic Organic Chemistry with More Sustainable Alternatives. Chem Rev 2022; 122:6749-6794. [PMID: 35201751 PMCID: PMC9098182 DOI: 10.1021/acs.chemrev.1c00672] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dipolar aprotic and ethereal solvents comprise just over 40% of all organic solvents utilized in synthetic organic, medicinal, and process chemistry. Unfortunately, many of the common "go-to" solvents are considered to be "less-preferable" for a number of environmental, health, and safety (EHS) reasons such as toxicity, mutagenicity, carcinogenicity, or for practical handling reasons such as flammability and volatility. Recent legislative changes have initiated the implementation of restrictions on the use of many of the commonly employed dipolar aprotic solvents such as dimethylformamide (DMF) and N-methyl-2-pyrrolidinone (NMP), and for ethers such as 1,4-dioxane. Thus, with growing legislative, EHS, and societal pressures, the need to identify and implement the use of alternative solvents that are greener, safer, and more sustainable has never been greater. Within this review, the ubiquitous nature of dipolar aprotic and ethereal solvents is discussed with respect to the physicochemical properties that have made them so appealing to synthetic chemists. An overview of the current legislative restrictions being imposed on the use of dipolar aprotic and ethereal solvents is discussed. A variety of alternative, safer, and more sustainable solvents that have garnered attention over the past decade are then examined, and case studies and examples where less-preferable solvents have been successfully replaced with a safer and more sustainable alternative are highlighted. Finally, a general overview and guidance for solvent selection and replacement are included in the Supporting Information of this review.
Collapse
Affiliation(s)
- Andrew Jordan
- School of Chemistry, University of Nottingham, GlaxoSmithKline Carbon Neutral Laboratory, 6 Triumph Road, Nottingham, NG7 2GA, U.K
| | - Callum G J Hall
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow, Scotland G1 1XL, U.K.,GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Lee R Thorp
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Helen F Sneddon
- Green Chemistry Centre of Excellence, University of York, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
5
|
Abstract
Among transition metal nanoparticles, palladium nanoparticles (PdNPs) are recognized for their high catalytic activity in a wide range of organic transformations that are of academic and industrial importance. The increased interest in environmental issues has led to the development of various green approaches for the preparation of efficient, low-cost and environmentally sustainable Pd-nanocatalysts. Environmentally friendly solvents, non-toxic reducing reagents, biodegradable capping and stabilizing agents and energy-efficient synthetic methods are the main aspects that have been taken into account for the production of Pd nanoparticles in a green approach. This review provides an overview of the fundamental approaches used for the green synthesis of PdNPs and their catalytic application in sustainable processes as cross-coupling reactions and reductions with particular attention afforded to the recovery and reuse of the palladium nanocatalyst, from 2015 to the present.
Collapse
|
6
|
Enudi OC, Louis H, Edim MM, Agwupuye JA, Ekpen FO, Bisong EA, Utsu PM. Understanding the aqueous chemistry of quinoline and the diazanaphthalenes: insight from DFT study. Heliyon 2021; 7:e07531. [PMID: 34296019 PMCID: PMC8282981 DOI: 10.1016/j.heliyon.2021.e07531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/18/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
The inter-fragment interactions at various binding sites and the overall cluster stability of quinolone (QNOL), cinnoline (CNOL), quinazoline (QNAZ), and quinoxaline (QNOX) complexes with H2O were studied using the density functional theory (DFT) approach. The adsorption and H-bond binding energies, and the energy decomposition mechanism was considered to determine the relative stabilization status of the studied clusters. Scanning tunneling microscopy (STM), natural bonding orbitals (NBO) and charge decomposition were studied to expose the electronic distribution and interaction between fragments. The feasibility of formations of the various complexes were also studied by considering their thermodynamic properties. Results from adsorption studies confirmed the actual adsorption of H2O molecules on the various binding sites studied, with QNOX clusters exhibiting the best adsorptions. Charge decomposition analysis (CDA) revealed significant charge transfer from substrate to H2O fragment in most complexes, except in QNOL, CNOL and QNAZ clusters with H2O at binding position 4, where much charges are back-donated to substrate. The O---H inter-fragment bonds was discovered to be stronger than counterpart N---H bonds in the complexes, whilst polarity indices confirmed N---H as more polar covalent than O---H bonds. Thermodynamic considerations revealed that the formation process of all studied complexes are endothermic (+ve ΔH f ) and non-spontaneous (+ve ΔG f ).
Collapse
Affiliation(s)
- Obieze C. Enudi
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Moses M. Edim
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - John A. Agwupuye
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Francis O. Ekpen
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Emmanuel A. Bisong
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Patrick M. Utsu
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| |
Collapse
|
7
|
Nahar Y, Thickett SC. Greener, Faster, Stronger: The Benefits of Deep Eutectic Solvents in Polymer and Materials Science. Polymers (Basel) 2021; 13:447. [PMID: 33573280 PMCID: PMC7866798 DOI: 10.3390/polym13030447] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022] Open
Abstract
Deep eutectic solvents (DESs) represent an emergent class of green designer solvents that find numerous applications in different aspects of chemical synthesis. A particularly appealing aspect of DES systems is their simplicity of preparation, combined with inexpensive, readily available starting materials to yield solvents with appealing properties (negligible volatility, non-flammability and high solvation capacity). In the context of polymer science, DES systems not only offer an appealing route towards replacing hazardous volatile organic solvents (VOCs), but can serve multiple roles including those of solvent, monomer and templating agent-so called "polymerizable eutectics." In this review, we look at DES systems and polymerizable eutectics and their application in polymer materials synthesis, including various mechanisms of polymer formation, hydrogel design, porous monoliths, and molecularly imprinted polymers. We provide a comparative study of these systems alongside traditional synthetic approaches, highlighting not only the benefit of replacing VOCs from the perspective of environmental sustainability, but also the materials advantage with respect to mechanical and thermal properties of the polymers formed.
Collapse
Affiliation(s)
| | - Stuart C. Thickett
- School of Natural Sciences—Chemistry, University of Tasmania, Hobart, TAS 7001, Australia;
| |
Collapse
|
8
|
Campana F, Massaccesi BM, Santoro S, Piermatti O, Vaccaro L. Polarclean/Water as a Safe and Recoverable Medium for Selective C2-Arylation of Indoles Catalyzed by Pd/C. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:16441-16450. [PMID: 33828930 PMCID: PMC8018292 DOI: 10.1021/acssuschemeng.0c05049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/21/2020] [Indexed: 06/01/2023]
Abstract
Herein, we report the use of nontoxic, water-miscible Polarclean as a safe dipolar aprotic solvent for the metal-catalyzed direct C2-H arylation of indoles using Pd/C as a catalyst. The developed method allows reaching excellent yields and regioselectivities, and it tolerates various substituents on both indole and diaryliodonium salt scaffolds. Polarclean is fully recoverable and reusable; it shows a very low leaching of the metal catalyst, allowing its complete recovery and reuse for at least six representative reaction runs.
Collapse
|
9
|
Anastasiou I, Van Velthoven N, Tomarelli E, Lombi A, Lanari D, Liu P, Bals S, De Vos DE, Vaccaro L. C2-H Arylation of Indoles Catalyzed by Palladium-Containing Metal-Organic-Framework in γ-Valerolactone. CHEMSUSCHEM 2020; 13:2786-2791. [PMID: 32061039 DOI: 10.1002/cssc.202000378] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 06/10/2023]
Abstract
An efficient and selective procedure was developed for the direct C2-H arylation of indoles using a Pd-loaded metal-organic framework (MOF) as a heterogeneous catalyst and the nontoxic biomass-derived solvent γ-valerolactone (GVL) as a reaction medium. The developed method allows for excellent yields and C-2 selectivity to be achieved and tolerates various substituents on the indole scaffold. The established conditions ensure the stability of the catalyst as well as recoverability, reusability, and low metal leaching into the solution.
Collapse
Affiliation(s)
- Ioannis Anastasiou
- Laboratory of Green SOC, Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8, 06124, Perugia, Italy
| | - Niels Van Velthoven
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F-box 2454, 3001, Leuven, Belgium
| | - Elena Tomarelli
- Laboratory of Green SOC, Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8, 06124, Perugia, Italy
| | - Aurora Lombi
- Laboratory of Green SOC, Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8, 06124, Perugia, Italy
| | - Daniela Lanari
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo, 1, 06123, Perugia, Italy
| | - Pei Liu
- Electron Microscopy for Materials Science, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sara Bals
- Electron Microscopy for Materials Science, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Dirk E De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F-box 2454, 3001, Leuven, Belgium
| | - Luigi Vaccaro
- Laboratory of Green SOC, Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8, 06124, Perugia, Italy
| |
Collapse
|
10
|
Affiliation(s)
- Luigi Vaccaro
- Laboratory of Green S.O.C.; Dipartimento di Chimica; Biologia e Biotecnologie; Università di Perugia; Via Elce di Sotto 8 06123 Perugia Italy
| |
Collapse
|