1
|
Alghamdi SK, Aljameel AI, Hussein RK, Al-Heuseen K, Aljaafreh MJ, Ezzat D. Theoretical Investigation of the Effects of Aldehyde Substitution with Pyran Groups in D-π-A Dye on Performance of DSSCs. Molecules 2024; 29:4175. [PMID: 39275025 PMCID: PMC11397415 DOI: 10.3390/molecules29174175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
This work investigated the substitution of the aldehyde with a pyran functional group in D-π-aldehyde dye to improve cell performance. This strategy was suggested by recent work that synthesized D-π-aldehyde dye, which achieved a maximum absorption wavelength that was only slightly off the threshold for an ideal sensitizer. Therefore, DFT and TD-DFT were used to investigate the effect of different pyran substituents to replace the aldehyde group. The pyran groups reduced the dye energy gap better than other known anchoring groups. The proposed dyes showed facile intermolecular charge transfer through the localization of HOMO and LUMO orbitals on the donor and acceptor parts, which promoted orbital overlap with the TiO2 surface. The studied dyes have HOMO and LOMO energy levels that could regenerate electrons from redox potential electrodes and inject electrons into the TiO2 conduction band. The lone pairs of oxygen atoms in pyran components act as nucleophile centers, facilitating adsorption on the TiO2 surface through their electrophile atoms. Pyrans increased the efficacy of dye sensitizers by extending their absorbance range and causing the maximum peak to redshift deeper into the visible region. The effects of the pyran groups on photovoltaic properties such as light harvesting efficiency (LHE), free energy change of electron injection, and dye regeneration were investigated and discussed. The adsorption behaviors of the proposed dyes on the TiO2 (1 1 0) surface were investigated by means of Monte Carlo simulations. The calculated adsorption energies indicates that pyran fragments, compared to the aldehyde in the main dye, had a greater ability to induce the adsorption onto the TiO2 substrate.
Collapse
Affiliation(s)
- Suzan K Alghamdi
- Physics Department, Faculty of Science, Taibah University, Madinah 44256, Saudi Arabia
| | - Abdulaziz I Aljameel
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Rageh K Hussein
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Khalled Al-Heuseen
- Department of Applied Science, Ajloun University College, Al-Balqa Applied University, Ajloun 26873, Jordan
| | - Mamduh J Aljaafreh
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Dina Ezzat
- Basic Science Department, Obour Institute (OI), Qalyubia 11828, Egypt
| |
Collapse
|
2
|
Lazrak M, Toufik H, Bouzzine SM, Ennehary S, Lamchouri F. Theoretical analysis on D-π-A triphenylamine-based dyes for dye-sensitized solar cells: effect of π-bridges on the optoelectronic, and photovoltaic properties. J Mol Model 2023; 29:266. [PMID: 37505323 DOI: 10.1007/s00894-023-05660-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
CONTEXT The dye-sensitized solar cell is a technology unique in its light conversion properties as it operates with record efficiencies in diffused light conditions. The choice of the appropriate sensitizer is one of the important strategies to improve photovoltaic performance of DSSC devices. This theoretical study mainly aims to determine the impact of the π-spacer on the geometric and optoelectronic parameters of sensitizer dyes. For that, we have chosen six organic dyes of Donor-π-Acceptor structure based on triphenylamine unit as electron donor, cyanoacrylic acid as electron acceptor with various π-bridges. The results indicated that the doping process modify dihedral angles and electronic properties by enhancing the planarity and decreasing the gap energy. We have examined the optoelectronic and photovoltaic properties of studied triphenylamine based-dyes. Introducing thiophene and furan as π-spacer groups in D6 dye can effectively decrease the gap energy (Egap = 2.21 eV), broaden the absorption range (λmax = 671.19 nm), and promote the light-harvesting properties. The D2 dye based on two pyrrole units presents an improved electron injection driving force (ΔGinject = - 2.269 eV) and regeneration driving force corresponding to better charge separation. The π-bridge groups can efficiently tune the optoelectronic and photovoltaic properties of sensitizers, which contribute to the efficiency of solar cells. METHODS The geometrical and electronic properties of all systems were studied by the DFT method using the correlation exchange functional B3LYP combined with 6-31G(d, p) basis set. On the other hand, the maximum absorption wavelengths λmax and the corresponding oscillator strengths were calculated using the hybrid functional BHandHLYP and 6-31+G(d) basis set. The solvent tetrahydrofuran (THF) are used to study the effect of the solvent, using the "Conductor-Polarizable Continuum" (C-PCM) model. All calculations were performed using Gaussian 09 program.
Collapse
Affiliation(s)
- Malak Lazrak
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, Fes, Morocco
| | - Hamid Toufik
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, Fes, Morocco.
| | - Si Mohamed Bouzzine
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, Fes, Morocco.
- Regional Center for Training and Professional Education, BP 8, Errachidia, Morocco.
| | - Sliman Ennehary
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, Fes, Morocco
| | - Fatima Lamchouri
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, Fes, Morocco
| |
Collapse
|
3
|
Shtepliuk I. A DFT Study of Phosphate Ion Adsorption on Graphene Nanodots: Implications for Sensing. SENSORS (BASEL, SWITZERLAND) 2023; 23:5631. [PMID: 37420797 DOI: 10.3390/s23125631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
The optical properties of graphene nanodots (GND) and their interaction with phosphate ions have been investigated to explore their potential for optical sensing applications. The absorption spectra of pristine GND and modified GND systems were analyzed using time-dependent density functional theory (TD-DFT) calculation investigations. The results revealed that the size of adsorbed phosphate ions on GND surfaces correlated with the energy gap of the GND systems, leading to significant modifications in their absorption spectra. The introduction of vacancies and metal dopants in GND systems resulted in variations in the absorption bands and shifts in their wavelengths. Moreover, the absorption spectra of GND systems were further altered upon the adsorption of phosphate ions. These findings provide valuable insights into the optical behavior of GND and highlight their potential for the development of sensitive and selective optical sensors for phosphate detection.
Collapse
Affiliation(s)
- Ivan Shtepliuk
- Semiconductor Materials Division, Department of Physics, Chemistry and Biology-IFM, Linköping University, S-58183 Linköping, Sweden
| |
Collapse
|
4
|
Roohi H, Mohtamadifar N. The role of the donor group and electron-accepting substitutions inserted in π-linkers in tuning the optoelectronic properties of D-π-A dye-sensitized solar cells: a DFT/TDDFT study. RSC Adv 2022; 12:11557-11573. [PMID: 35425060 PMCID: PMC9006569 DOI: 10.1039/d2ra00906d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
The design of low-cost and high-efficiency sensitizers is one of the most important factors in the expansion of dye-sensitized solar cells (DSSCs). To obtain effective sensitizer dyes for applications in dye-sensitized solar cells, a series of metal-free organic dyes with the D–π–A–A arrangement and with different donor and acceptor groups have been designed by using computational methodologies based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT). We have designed JK-POZ(1–3) and JK-PTZ(1–3) D–π–A–A organic dyes by modifying the donor and π-linker units of the JK-201 reference dye. Computational calculations of the structural, photochemical properties and electrochemical properties, as well as the key parameters related to the short-circuit current density and open-circuit voltage, including light-harvesting efficiency (LHE), singlet excited state lifetime (τ), reorganization energies (λtotal), electronic injection-free energy (ΔGinject) and regeneration driving forces (ΔGreg) of dyes were calculated and analyzed. Moreover, charge transfer parameters, such as the amount of charge transfer (qCT), the charge transfer distance (DCT), and dipole moment changes (μCT), were investigated. The results show that ΔGreg, λmax, λtotal and τ of JK-POZ-3 and JK-PTZ-3 dyes are superior to those of JK-201, indicating that novel JK-POZ-3 and JK-PTZ-3 dyes could be promising candidates for improving the efficiency of the DSSCs devices. A series of metal-free organic dyes with the D–π–A–A arrangement and with different donor and acceptor groups have been designed theoretically.![]()
Collapse
Affiliation(s)
- Hossein Roohi
- Computational Quantum Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Guilan Rasht Iran +98 131 3233262
| | - Nafiseh Mohtamadifar
- Computational Quantum Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Guilan Rasht Iran +98 131 3233262
| |
Collapse
|
5
|
Devadiga D, Selvakumar M, Devadiga D, Ahipa TN, Shetty P, Paramasivam S, Kumar SS. Synthesis and characterization of a new phenothiazine-based sensitizer/co-sensitizer for efficient dye-sensitized solar cell performance using a gel polymer electrolyte and Ni–TiO 2 as a photoanode. NEW J CHEM 2022. [DOI: 10.1039/d2nj03589h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Efficiency enhancement of a DSSC using a metal-free co-sensitizer, Ni–TiO2 photoanode, and blend gel polymer electrolyte.
Collapse
Affiliation(s)
- Dheeraj Devadiga
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - M. Selvakumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Deepak Devadiga
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra Post, Ramanagara District, Bangalore, 562112, India
| | - T. N. Ahipa
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra Post, Ramanagara District, Bangalore, 562112, India
| | - Prakasha Shetty
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Selvaraj Paramasivam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - S. Senthil Kumar
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| |
Collapse
|
6
|
Effect of donor and acceptor on optoelectronic properties of benzo[1,2-b:4,5-b′]dithiophene. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02855-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Experimental and theoretical studies of the electrochemical properties of mono azo dyes derived from 2-nitroso-1- naphthol, 1-nitroso-2-naphthol, and C.I disperse yellow 56 commercial dye in dye-sensitized solar cell. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130615] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Sarikavak K, Kurtay G, Sevin F, Güllü M. Molecular engineering of thienothiophene or dithienopyrrole-based π-spacers for dye-sensitized solar cells (DSSCs) with D-π-A architecture: A DFT/TD-DFT study. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Designing of benzothiazole based non-fullerene acceptor (NFA) molecules for highly efficient organic solar cells. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112833] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Irgashev RA, Demina NS, Rusinov GL. Construction of 2,3-disubstituted benzo[b]thieno[2,3-d]thiophenes and benzo[4,5]selenopheno[3,2-b]thiophenes using the Fiesselmann thiophene synthesis. Org Biomol Chem 2020; 18:3164-3168. [PMID: 32267276 DOI: 10.1039/d0ob00300j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A series of 3-(hetero)aryl-substituted benzo[b]thieno[2,3-d]thiophenes, bearing various electron withdrawing groups at C-2 position of their scaffolds, were obtained using a convenient approach based on the Fiesselmann thiophene synthesis. To realize this strategy, the Friedel-Crafts acylation of (hetero)arenes with easily accessible 3-chlorobenzo[b]thiophene-2-carbonyl chlorides was initially performed to afford 3-chloro-2-(hetero)aroylbenzo[b]thiophenes. The latter ketones were treated either with methyl thioglycolate in the presence of DBU and calcium oxide powder or successively with sodium sulfide, an alkylating agent, containing methylene active component, and also DBU and calcium oxide, to form the desired benzo[b]thieno[2,3-d]thiophene derivatives. In addition, similar benzo[4,5]selenopheno[3,2-b]thiophene derivatives were prepared in the same manner using 3-bromobenzo[b]selenophen-2-yl substrates. The obtained functional derivatives of both benzo[b]thieno[2,3-d]thiophene and benzo[4,5]selenopheno[3,2-b]thiophene are of interest for further elaboration of organic semiconductor materials.
Collapse
Affiliation(s)
- Roman A Irgashev
- Postovsky Institute of Organic Synthesis, Ural Division, Russian Academy of Sciences, S. Kovalevskoy Str., 22, Ekaterinburg, 620990, Russia. and Ural Federal University named after the First President of Russia B. N. Yeltsin, Mira Str., 19, Ekaterinburg, 620002, Russia
| | - Nadezhda S Demina
- Postovsky Institute of Organic Synthesis, Ural Division, Russian Academy of Sciences, S. Kovalevskoy Str., 22, Ekaterinburg, 620990, Russia. and Ural Federal University named after the First President of Russia B. N. Yeltsin, Mira Str., 19, Ekaterinburg, 620002, Russia
| | - Gennady L Rusinov
- Postovsky Institute of Organic Synthesis, Ural Division, Russian Academy of Sciences, S. Kovalevskoy Str., 22, Ekaterinburg, 620990, Russia. and Ural Federal University named after the First President of Russia B. N. Yeltsin, Mira Str., 19, Ekaterinburg, 620002, Russia
| |
Collapse
|
11
|
Oprea CI, Panait P, Essam ZM, Abd El-Aal RM, Gîrțu MA. Photoexcitation Processes in Oligomethine Cyanine Dyes for Dye-Sensitized Solar Cells-Synthesis and Computational Study. NANOMATERIALS 2020; 10:nano10040662. [PMID: 32252286 PMCID: PMC7221816 DOI: 10.3390/nano10040662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022]
Abstract
We report density functional theory (DFT) calculations of three newly synthesized oligomethine cyanine-based dyes as potential TiO2-sensitizers in dye-sensitized solar cells. The three dyes have π-symmetry and the same acceptor side, terminating in the carboxylic anchor, but they differ through the π-bridge and the donor groups. We perform DFT and time-dependent DFT studies and present the electronic structure and optical properties of the dyes alone as well as adsorbed to the TiO2 nanocluster, to provide some predictions on the photovoltaic performance of the system. We analyze theoretically the factors that can influence the short circuit current and the open circuit voltage of the dye-sensitized solar cells. We examine the matching of the absorption spectra of the dye and dye-nanocluster system with the solar irradiation spectrum. We display the energy level diagrams and discuss the alignment between the excited state of the dyes and the conduction band edge of the oxide as well as between the redox level of the electrolyte and the ground state of the dyes. We determine the electron density of the key molecular orbitals and analyze comparatively the electron transfer from the dye to the semiconducting substrate. To put our findings in the right perspective we compare the results of our calculations with those obtained for a coumarin-based dye used in fabricating and testing actual devices, for which experimental data regarding the photovoltaic performance are available.
Collapse
Affiliation(s)
- Corneliu I. Oprea
- Department of Physics and Electronics, Ovidius University of Constanța, 900527 Constanța, Romania;
| | - Petre Panait
- Doctoral School, Faculty of Physics, University of Bucharest, 077125 Bucharest, Romania;
| | - Zahraa M. Essam
- Department of Chemistry, Suez University, 43511 Suez, Egypt;
| | - Reda M. Abd El-Aal
- Department of Chemistry, Suez University, 43511 Suez, Egypt;
- Correspondence: (R.M.A.E.-A.); (M.A.G.)
| | - Mihai A. Gîrțu
- Department of Physics and Electronics, Ovidius University of Constanța, 900527 Constanța, Romania;
- Correspondence: (R.M.A.E.-A.); (M.A.G.)
| |
Collapse
|
12
|
Li Y, Li X, Xu Y. Theoretical insights into the effect of pristine, doped and hole graphene on the overall performance of dye-sensitized solar cells. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01264h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphene, a promising two-dimensional carbon material, has been extensively employed in dye-sensitized solar cells (DSSCs) with encouraging results.
Collapse
Affiliation(s)
- Yuanchao Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- State Key Lab of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
| | - Xin Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- State Key Lab of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
| | - Yanling Xu
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| |
Collapse
|
13
|
Wang X, Li Y, Song P, Ma F, Yang Y. Second-Order Nonlinear Optical Switch Manipulation of Photosensitive Layer by an External Electric Field Coupled with Graphene Quantum Dots. J Phys Chem A 2019; 123:7401-7407. [DOI: 10.1021/acs.jpca.9b05249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaofei Wang
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Yuanzuo Li
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Peng Song
- Department of Physics, Liaoning University, Shenyang 110036, Liaoning, China
| | - Fengcai Ma
- Department of Physics, Liaoning University, Shenyang 110036, Liaoning, China
| | - Yanhui Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 211816 Nanjing, China
| |
Collapse
|
14
|
Study on the spectral complementary composite dye molecules designed for high performance dye-sensitized solar cells: A theoretical investigation. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|