1
|
Dai LT, Yang L, Wang ZP, Guo JC, Ma QY, Xie QY, Dai HF, Yu ZF, Zhao YX. Persteroid, a new steroid from the marine-derived fungus Penicillium sp. ZYX-Z-143. Nat Prod Res 2024:1-8. [PMID: 39225394 DOI: 10.1080/14786419.2024.2394834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
A new steroid named persteroid (1) and seven known compounds (2-8) were isolated from the marine-derived fungus Penicillium sp. ZYX-Z-143. The structure of 1 was determined by HRESIMS, NMR, and ECD calculations. Compound 1 showed inhibitory activity against protein tyrosine phosphatase 1B (PTP1B) with IC50 value of 46.31 ± 0.52 μM. Moreover, compound 1 potently suppressed nitric oxide (NO) production on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The cytotoxicity and antibacterial activity of all isolates were tested.
Collapse
Affiliation(s)
- Lu-Ting Dai
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Li Yang
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zi-Peng Wang
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiao-Cen Guo
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qing-Yun Ma
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qing-Yi Xie
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hao-Fu Dai
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhi-Fang Yu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - You-Xing Zhao
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
2
|
Zhang Z, Li Y, Wang H, Xu W, Wang C, Ma H, Zhong F, Ou J, Luo Z, Luo HB, Cheng Z. Ergone Derivatives from the Deep-Sea-Derived Fungus Aspergillus terreus YPGA10 and 25,28-Dihydroxyergone-Induced Apoptosis in Human Colon Cancer SW620 Cells. JOURNAL OF NATURAL PRODUCTS 2024; 87:1563-1573. [PMID: 38856635 DOI: 10.1021/acs.jnatprod.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Ten new ergone derivatives (1-10) and five known analogues (11-15) were isolated from the deep-sea-derived fungus Aspergillus terreus YPGA10. The structures including the absolute configurations were established by detailed analysis of the NMR spectroscopic data, HRESIMS, ECD calculation, and coupling constant calculation. All the structures are characterized by a highly conjugated 25-hydroxyergosta-4,6,8(14),22-tetraen-3-one nucleus. Structurally, compound 2 bearing a 15-carbonyl group and compounds 5-7 possessing a 15β-OH/OCH3 group are rarely encountered in ergone derivatives. Bioassay results showed that compounds 1 and 11 demonstrated cytotoxic effects on human colon cancer SW620 cells with IC50 values of 8.4 and 3.1 μM, respectively. Notably, both compounds exhibited negligible cytotoxicity on the human normal lung epithelial cell BEAS-2B. Compound 11 was selected for preliminary mechanistic study and was found to inhibit cell proliferation and induce apoptosis in human colon cancer SW620 cells. In addition, compound 1 displayed cytotoxic activity against five human leukemia cell lines with IC50 values ranging from 5.7 to 8.9 μM. Our study demonstrated that compound 11 may serve as a potential candidate for the development of anticolorectal cancer agents.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, People's Republic of China
- School of Pharmacy, Jining Medical University, Xueyuan Road, Rizhao 276800, People's Republic of China
| | - Yuanli Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, People's Republic of China
| | - Huannan Wang
- School of Pharmacy, Jining Medical University, Xueyuan Road, Rizhao 276800, People's Republic of China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| | - Chunying Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, People's Republic of China
| | - Huabin Ma
- Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Fang Zhong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, People's Republic of China
| | - Jiazhi Ou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, People's Republic of China
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, People's Republic of China
| | - Zhongbin Cheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, People's Republic of China
| |
Collapse
|
3
|
Cao F, Liu XM, Wang X, Zhang YH, Yang J, Li W, Luo DQ, Liu YF. Structural diversity and biological activities of indole-diterpenoids from Penicillium janthinellum by co-culture with Paecilomyces formosus. Bioorg Chem 2023; 141:106863. [PMID: 37722269 DOI: 10.1016/j.bioorg.2023.106863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Co-culturing the marine-derived fungi Penicillium janthinellium with Paecilomyces formosus led to the isolation of nine new indole-diterpenes, janthinellumines A-I (1-9), along with twelve known analogues (10-21). The chemical structures including their absolute configurations of them were assigned by the analysis of extensive spectroscopic data and calculated ECD and VCD methods. These indole-diterpenoids displayed extensive biological activities, including anti-influenza A virus, protein tyrosine phosphatase (PTP) inhibitory, and anti-Vibrio activities. Among them, the anti-influenza mechanism of compounds 1, 2, and 7 was further investigated using neuraminidase inhibitory assay, molecular docking, and reverse genetics methods, suggesting that 1, 2, and 7 could interact with Arg371 of the viral neuraminidase. The structure-activity relationship (SAR) of PTPs inhibitory activity for indole-diterpene derivatives (1, 2, 4, 5, 9-16, and 19-21) was also summarized.
Collapse
Affiliation(s)
- Fei Cao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, China.
| | - Xue-Meng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, China
| | - Xu Wang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, China
| | - Ya-Hui Zhang
- College of Life Sciences, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Jie Yang
- Huanghua Branch of Beijing Computing Center Co., Ltd, Cangzhou 061108, China
| | - Wan Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, China
| | - Du-Qiang Luo
- College of Life Sciences, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China.
| | - Yun-Feng Liu
- College of Life Sciences, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China; College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
4
|
Zhang YH, Zhao YJ, Qi L, Du HF, Cao F, Wang CY. Talasteroid, a new withanolide from the marine-derived fungus Talaromyces stollii. Nat Prod Res 2023; 37:3283-3289. [PMID: 35476591 DOI: 10.1080/14786419.2022.2070747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
A new withanolide, talasteroid (1), and a known steroid (2), along with eight meroterpenoids (3-10), were obtained from the rice culture of the marine-derived fungus Talaromyces stollii HBU-115. The structure of 1 including its absolute configuration was determined by extensive 1 D and 2 D NMR spectroscopy, and single-crystal X-ray diffraction analysis. Compound 1 represents the first withanolide featuring a 4-substituted 2,3-dimethyl-2-butenolide ring in the side chain. The isolated compounds were evaluated for their antimicrobial and antioxidant activities.
Collapse
Affiliation(s)
- Ya-Hui Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- College of Pharmaceutical Sciences, Hebei University, Baoding, People's Republic of China
| | - Ying-Jie Zhao
- College of Pharmaceutical Sciences, Hebei University, Baoding, People's Republic of China
| | - Lu Qi
- College of Pharmaceutical Sciences, Hebei University, Baoding, People's Republic of China
| | - Hui-Fang Du
- College of Pharmaceutical Sciences, Hebei University, Baoding, People's Republic of China
| | - Fei Cao
- College of Pharmaceutical Sciences, Hebei University, Baoding, People's Republic of China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Lindsay CA, Kinghorn AD, Rakotondraibe HL. Bioactive and unusual steroids from Penicillium fungi. PHYTOCHEMISTRY 2023; 209:113638. [PMID: 36914145 PMCID: PMC10077519 DOI: 10.1016/j.phytochem.2023.113638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Penicillium fungi are represented by various species and can be found worldwide and thrive in a range of environments, such as in the soil, air, and indoors, and in marine environments, as well as food products. Chemical investigation of species of this genus has led to the discovery of compounds from several structural classes with varied bioactivities. As an example, this genus has been a source of bioactive and structurally unusual steroids. The scope of this short review is to cover specialized metabolites of the steroid class and the cytotoxic, antimicrobial, anti-inflammatory as well as phytotoxic activities of these compounds. Other steroids that possess unusual structures, with significant bioactivity yet to determined, will also be discussed to further demonstrate the structural diversity of this compound class from Penicillium fungi, and hopefully inspire the further exploration of such compounds to uncover their activity.
Collapse
Affiliation(s)
- Charmaine A Lindsay
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Harinantenaina L Rakotondraibe
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Zhang Y, Lin M, Qin Y, Lu H, Xu X, Gao C, Liu Y, Luo W, Luo X. Anti-Vibrio potential of natural products from marine microorganisms. Eur J Med Chem 2023; 252:115330. [PMID: 37011553 DOI: 10.1016/j.ejmech.2023.115330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
The emergence of drug-resistant Vibrio poses a serious threat to aquaculture and human health, thus there is an urgent need for the discovery of new related antibiotics. Given that marine microorganisms (MMs) are evidenced as important sources of antibacterial natural products (NPs), great attention has been gained to the exploration of potential anti-Vibrio agents from MMs. This review summarizes the occurrence, structural diversity, and biological activities of 214 anti-Vibrio NPs isolated from MMs (from 1999 to July 2022), including 108 new compounds. They were predominantly originated from marine fungi (63%) and bacteria (30%) with great structural diversity, including polyketides, nitrogenous compounds, terpenoids, and steroids, among which polyketides account for nearly half (51%) of them. This review will shed light on the development of MMs derived NPs as potential anti-Vibrio lead compounds with promising applications in agriculture and human health.
Collapse
|
7
|
Pang S, Guo ZG, Wang L, Guo QF, Cao F. Anti-IAV indole-diterpenoids from the marine-derived fungus Penicillium citrinum. Nat Prod Res 2023; 37:586-591. [PMID: 35608160 DOI: 10.1080/14786419.2022.2078820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A new indole-diterpenoid, penijanthine E (1), and a known analogue (2), were obtained from the PDB culture of the marine-derived fungus Penicillium citrinum ZSS-9. The absolute configuration of 1 was elucidated by calculated TDDFT ECD and DP4plus calculations. The absolute configuration of 2 was confirmed by single-crystal X-ray diffraction analysis and TDDFT ECD calculations. Compounds 1 and 2 showed antiviral activity against influenza A virus (IAV) of A/WSN/33(H1N1) and A/PR/8/34(H1N1) strains with IC50 values ranging from 12.6 to 46.8 μM.
Collapse
Affiliation(s)
- Sen Pang
- Huanghe Science & Technology College, Zhengzhou, P.R. China
| | - Zhi-Gang Guo
- Huanghe Science & Technology College, Zhengzhou, P.R. China
| | - Li Wang
- Huanghe Science & Technology College, Zhengzhou, P.R. China
| | - Qing-Feng Guo
- Huanghe Science & Technology College, Zhengzhou, P.R. China
| | - Fei Cao
- Huanghe Science & Technology College, Zhengzhou, P.R. China.,College of Pharmaceutical Sciences, Hebei University, Baoding, P.R. China
| |
Collapse
|
8
|
Kasanah N, Ulfah M, Rowley DC. Natural products as antivibrio agents: insight into the chemistry and biological activity. RSC Adv 2022; 12:34531-34547. [PMID: 36545587 PMCID: PMC9713624 DOI: 10.1039/d2ra05076e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Vibriosis causes serious problems and economic loss in aquaculture and human health. Investigating natural products as antivibrio agents has gained more attention to combat vibriosis. The present review highlights the chemical diversity of antivibrio isolated from bacteria, fungi, plants, and marine organisms. Based on the study covering the literature from 1985-2021, the chemical diversity ranges from alkaloids, terpenoids, polyketides, sterols, and peptides. The mechanisms of action are included inhibiting growth, interfering with biofilm formation, and disrupting of quorum sensing. Relevant summaries focusing on the source organisms and the associated bioactivity of different chemical classes are also provided. Further research on in vivo studies, toxicity, and clinical is required for the application in aquaculture and human health.
Collapse
Affiliation(s)
- Noer Kasanah
- Department of Fisheries, Faculty of Agriculture, Universitas Gadjah MadaIndonesia
| | - Maria Ulfah
- Integrated Lab. Agrocomplex, Faculty of Agriculture, Universitas Gadjah MadaIndonesia
| | - David C. Rowley
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode IslandUSA
| |
Collapse
|
9
|
Hou Y, Chen M, Sun Z, Ma G, Chen D, Wu H, Yang J, Li Y, Xu X. The Biosynthesis Related Enzyme, Structure Diversity and Bioactivity Abundance of Indole-Diterpenes: A Review. Molecules 2022; 27:6870. [PMID: 36296463 PMCID: PMC9611320 DOI: 10.3390/molecules27206870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
Indole diterpenes are a large class of secondary metabolites produced by fungi, possessing a cyclic diterpenoid backbone and an indole moiety. Novel structures and important biological activity have made indole diterpenes one of the focuses of synthetic chemists. Although the discovery, identification, structural diversity, biological activity and especially structure-activity relationship of indole diterpenes have been reported in some papers in recent years, they are absent of a systematic and comprehensive analysis, and there is no elucidation of enzymes related to this kind of natural product. Therefore, it is necessary to summarize the relevant reports to provide new perspectives for the following research. In this review, for the first time, the function of related synthases and the structure-activity relationship of indole diterpenes are expounded, and the recent research advances of them are emphasized.
Collapse
Affiliation(s)
- Yong Hou
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Meiying Chen
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Zhaocui Sun
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Guoxu Ma
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Deli Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Haifeng Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Junshan Yang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Yihang Li
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xudong Xu
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
10
|
Wang WJ, Liao LX, Huang ZD, Wei FT, Yang XL. Thiazolo[5,4- b]pyridine Alkaloid and Seven ar-Bisabol Sesquiterpenes Produced by the Endophytic Fungus Penicillium janthinellum. ACS OMEGA 2022; 7:35280-35287. [PMID: 36211040 PMCID: PMC9535718 DOI: 10.1021/acsomega.2c04434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
We investigated the secondary metabolites present in Penicillium janthinellum MPT-25, an endophytic fungus isolated from Taxus wallichiana var. chinensis (Pilger) Florin. Chemical characterization of the solid cultured extract resulted in the isolation of 11 compounds, including eight previously undescribed metabolites: a thiazolo[5,4-b]pyridine alkaloid, janthinedine A (1), and seven ar-bisabol sesquiterpenes, janthinepenes A-G (2-8). Their structures were elucidated by a combination of extensive spectroscopic methods, including single-crystal X-ray diffraction and ECD spectra. The antimicrobial activities of these compounds were evaluated against seven agricultural pathogenic fungi and eight clinically drug-resistant bacteria.
Collapse
|
11
|
Zhang YH, Du HF, Gao WB, Li W, Cao F, Wang CY. Anti-inflammatory Polyketides from the Marine-Derived Fungus Eutypella scoparia. Mar Drugs 2022; 20:486. [PMID: 36005490 PMCID: PMC9410037 DOI: 10.3390/md20080486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Three new polyketides, eutyketides A and B (1 and 2) and cytosporin X (3), along with four known compounds (4-7), were obtained from the marine-derived fungus Eutypella scoparia. The planar structures of 1 and 2 were elucidated by extensive HRMS and 1D and 2D NMR analyses. Their relative configurations of C-13 and C-14 were determined with chemical conversions by introducing an acetonylidene group. The absolute configurations of 1-3 were determined by comparing their experimental electronic circular dichroism (ECD) data with their computed ECD results. All of the isolated compounds were tested for their anti-inflammatory activities on lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages. Compounds 5 and 6 showed stronger anti-inflammatory activities than the other compounds, with the inhibition of 49.0% and 54.9% at a concentration of 50.0 µg/mL, respectively.
Collapse
Affiliation(s)
- Ya-Hui Zhang
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, China; (H.-F.D.); (W.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hui-Fang Du
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, China; (H.-F.D.); (W.L.)
| | - Wen-Bin Gao
- College of Life Sciences, Cangzhou Normal University, Cangzhou 061000, China;
| | - Wan Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, China; (H.-F.D.); (W.L.)
| | - Fei Cao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, China; (H.-F.D.); (W.L.)
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
12
|
Zhang YH, Li L, Li YQ, Luo JH, Li W, Li LF, Zheng CJ, Cao F. Oxalierpenes A and B, Unusual Indole-Diterpenoid Derivatives with Antiviral Activity from a Marine-Derived Strain of the Fungus Penicillium oxalicum. JOURNAL OF NATURAL PRODUCTS 2022; 85:1880-1885. [PMID: 35729787 DOI: 10.1021/acs.jnatprod.2c00322] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oxalierpenes A and B (1 and 2), two unusual indole-diterpenoid derivatives, were obtained from the marine-derived fungus Penicillium oxalicum. The absolute configurations of 1 and 2 were elucidated by calculated TDDFT ECD and DP4plus methods. Oxalierpene A (1) represents the first indole-diterpenoid derivative with a five-membered ring of 4-hydroxy-5,5-dimethyldihydrofuran-3-one as a side chain. Oxalierpene B (2) has a unique 6/5/6/5/5/6/6/5/5 ring system. Compounds 1 and 2 showed antiviral activity against the H1N1 virus and respiratory syncytial virus (RSV), with IC50 values ranging from 2.8 to 9.4 μM.
Collapse
Affiliation(s)
- Ya-Hui Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, People's Republic of China
| | - Lei Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, People's Republic of China
| | - Ya-Qi Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, People's Republic of China
| | - Jia-Hua Luo
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, People's Republic of China
| | - Wan Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, People's Republic of China
| | - Long-Fei Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, People's Republic of China
| | - Cai-Juan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Fei Cao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, People's Republic of China
| |
Collapse
|
13
|
Marine fungal metabolites as a source of drug leads against aquatic pathogens. Appl Microbiol Biotechnol 2022; 106:3337-3350. [PMID: 35486178 DOI: 10.1007/s00253-022-11939-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022]
Abstract
Aquatic pathogens, including Vibrio, Edwardsiella, Pseudomonas, and Aeromonas, which could result in bacterial diseases to aquaculture, have seriously threatened the world aquaculture production. Marine-derived fungi, which could produce novel secondary metabolites with significant antibacterial activity, may be an important source for finding effective agents against aquatic pathogens. In this review, a systematically overview of the harm of several aquatic pathogens, and 134 antibacterial secondary metabolites against aquatic pathogens from 13 genera of marine-derived fungi, were summarized and concluded. The aim of this review is to find out the relationships between activity and structural type, between bioactive compounds and their hosts, and so on. Altogether, 95 references published during 1997-2021 were cited. KEY POINTS: •Aquatic pathogens, which could result in bacterial diseases to aquaculture, were described. •Marine fungal metabolites with activities against aquatic pathogens were summarized. •The distributions of these bioactive marine fungal metabolites were analyzed.
Collapse
|
14
|
Saha P, Rahman FI, Hussain F, Rahman SMA, Rahman MM. Antimicrobial Diterpenes: Recent Development From Natural Sources. Front Pharmacol 2022; 12:820312. [PMID: 35295739 PMCID: PMC8918777 DOI: 10.3389/fphar.2021.820312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance has been posing an alarming threat to the treatment of infectious diseases over the years. Ineffectiveness of the currently available synthetic and semisynthetic antibiotics has led the researchers to discover new molecules with potent antimicrobial activities. To overcome the emerging antimicrobial resistance, new antimicrobial compounds from natural sources might be appropriate. Secondary metabolites from natural sources could be prospective candidates in the development of new antimicrobial agents with high efficacy and less side effects. Among the natural secondary metabolites, diterpenoids are of crucial importance because of their broad spectrum of antimicrobial activity, which has put it in the center of research interest in recent years. The present work is aimed at reviewing recent literature regarding different classes of natural diterpenes and diterpenoids with significant antibacterial, antifungal, antiviral, and antiprotozoal activities along with their reported structure-activity relationships. This review has been carried out with a focus on relevant literature published in the last 5 years following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 229 diterpenoids from various sources like plants, marine species, and fungi are summarized in this systematic review, including their chemical structures, classification, and significant antimicrobial activities together with their reported mechanism of action and structure-activity relationships. The outcomes herein would provide researchers with new insights to find new credible leads and to work on their synthetic and semisynthetic derivatives to develop new antimicrobial agents.
Collapse
Affiliation(s)
- Poushali Saha
- Faculty of Pharmacy, Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, Bangladesh
| | - Fahad Imtiaz Rahman
- Faculty of Pharmacy, Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, Bangladesh
| | - Fahad Hussain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - S. M. Abdur Rahman
- Faculty of Pharmacy, Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, Bangladesh
| | - M. Mukhlesur Rahman
- Medicines Research Group, School of Health, Sports and Bioscience, University of East London, London, United Kingdom
| |
Collapse
|
15
|
Li J, Zhuang CL. Natural Indole Alkaloids from Marine Fungi: Chemical Diversity and Biological Activities. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1740050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The indole scaffold is one of the most important heterocyclic ring systems for pharmaceutical development, and serves as an active moiety in several clinical drugs. Fungi derived from marine origin are more liable to produce novel indole-containing natural products due to their extreme living environments. The indole alkaloids from marine fungi have drawn considerable attention for their unique chemical structures and significant biological activities. This review attempts to provide a summary of the structural diversity of marine fungal indole alkaloids including prenylated indoles, diketopiperazine indoles, bisindoles or trisindoles, quinazoline-containing indoles, indole-diterpenoids, and other indoles, as well as their known biological activities, mainly focusing on cytotoxic, kinase inhibitory, antiinflammatory, antimicrobial, anti-insecticidal, and brine shrimp lethal effects. A total of 306 indole alkaloids from marine fungi have been summarized, covering the references published from 1995 to early 2021, expecting to be beneficial for drug discovery in the future.
Collapse
Affiliation(s)
- Jiao Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chun-Lin Zhuang
- Department of Natural Product Chemistry, School of Pharmacy, The Second Military Medical University, Shanghai, People's Republic of China
- Department of Medicinal Chemistry, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| |
Collapse
|
16
|
Hu Y, Chen S, Yang F, Dong S. Marine Indole Alkaloids-Isolation, Structure and Bioactivities. Mar Drugs 2021; 19:658. [PMID: 34940657 PMCID: PMC8708922 DOI: 10.3390/md19120658] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Indole alkaloids are heterocyclic natural products with extensive pharmacological activities. As an important source of lead compounds, many clinical drugs have been derived from natural indole compounds. Marine indole alkaloids, from unique marine environments with high pressure, high salt and low temperature, exhibit structural diversity with various bioactivities, which attracts the attention of drug researchers. This article is a continuation of the previous two comprehensive reviews and covers the literature on marine indole alkaloids published from 2015 to 2021, with 472 new or structure-revised compounds categorized by sources into marine microorganisms, invertebrates, and plant-derived. The structures and bioactivities demonstrated in this article will benefit the synthesis and pharmacological activity study for marine indole alkaloids on their way to clinical drugs.
Collapse
Affiliation(s)
| | | | | | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (Y.H.); (S.C.); (F.Y.)
| |
Collapse
|
17
|
Bi Y, Liu G, Yu Q, Liang Q, Xu Z, Cui M, Zhang Q, Xu D. Anti-Vibrio dibutyl phthalate from marine-derived Streptomyces sp. S073. Res Vet Sci 2021; 140:198-202. [PMID: 34525439 DOI: 10.1016/j.rvsc.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022]
Abstract
Marine Streptomyces S073 was previously shown to have strong anti-Vibrio activity, and its antibacterial mechanism was proposed to be associated with siderophore-mediated iron competition and other antagonistic agents. In this study, anti-Vibrio compounds produced by S073 were isolated by bioassay-guided fractionation using column chromatography and HPLC, and the target compound in the most active fraction was identified as dibutyl phthalate (DBP) by various spectroscopic analyses, including EI-MS, 1H NMR and 13C NMR. The DBP-producing capacity of S073 was 2.39 mg/L in ISP1 culture media. Pure DBP was demonstrated to have strong inhibitory activity on Vibiro parahaemolyticus growth with an MIC of 31.25 mg/L. When standard DBP was supplemented into the S073 fermentation broth in a gradient method, an additive inhibitory effect on V. parahaemolyticus was observed, indicating the important role of DBP in driving anti-Vibrio activity in S073 metabolites pool. A synergistic additive effect between DBP and florfenicol was observed in the Vibrio inhibition. These results indicate that, to achieve Vibrio-inhibition, S073 exerted multifaceted strategies, which included DBP-mediated antagonism and siderophore-governed iron competition. The application potential of S073 as an aquaculture probiotic was evaluated, and the safety risks associated with the endocrine disruptor attributes of DBP were discussed.
Collapse
Affiliation(s)
- Yunwen Bi
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Ganxing Liu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Qiushi Yu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Qiting Liang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Zhongheng Xu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Miao Cui
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| | - Qizhong Zhang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| | - Delin Xu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
18
|
Jiang M, Wu Z, Liu L, Chen S. The chemistry and biology of fungal meroterpenoids (2009-2019). Org Biomol Chem 2021; 19:1644-1704. [PMID: 33320161 DOI: 10.1039/d0ob02162h] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungal meroterpenoids are secondary metabolites from mixed terpene-biosynthetic origins. Their intriguing chemical structural diversification and complexity, potential bioactivities, and pharmacological significance make them attractive targets in natural product chemistry, organic synthesis, and biosynthesis. This review provides a systematic overview of the isolation, chemical structural features, biological activities, and fungal biodiversity of 1585 novel meroterpenoids from 79 genera terrestrial and marine-derived fungi including macrofungi, Basidiomycetes, in 441 research papers in 2009-2019. Based on the nonterpenoid starting moiety in their biosynthesis pathway, meroterpenoids were classified into four categories (polyketide-terpenoid, indole-, shikimate-, and miscellaneous-) with polyketide-terpenoids (mainly tetraketide-) and shikimate-terpenoids as the primary source. Basidiomycota produced 37.5% of meroterpenoids, mostly shikimate-terpenoids. The genera of Ganoderma, Penicillium, Aspergillus, and Stachybotrys are the four dominant producers. Moreover, about 56% of meroterpenoids display various pronounced bioactivities, including cytotoxicity, enzyme inhibition, antibacterial, anti-inflammatory, antiviral, antifungal activities. It's exciting that several meroterpenoids including antroquinonol and 4-acetyl antroquinonol B were developed into phase II clinically used drugs. We assume that the chemical diversity and therapeutic potential of these fungal meroterpenoids will provide biologists and medicinal chemists with a large promising sustainable treasure-trove for drug discovery.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| |
Collapse
|
19
|
Marcarino MO, Cicetti S, Zanardi MM, Sarotti AM. A critical review on the use of DP4+ in the structural elucidation of natural products: the good, the bad and the ugly. A practical guide. Nat Prod Rep 2021; 39:58-76. [PMID: 34212963 DOI: 10.1039/d1np00030f] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2015 up to the end of 2020Even in the golden age of NMR, the number of natural products being incorrectly assigned is becoming larger every day. The use of quantum NMR calculations coupled with sophisticated data analysis provides ideal complementary tools to facilitate the elucidation process in challenging cases. Among the current computational methodologies to perform this task, the DP4+ probability is a popular and widely used method. This updated version of Goodman's DP4 synergistically combines NMR calculations at higher levels of theory with the Bayesian analysis of both scaled and unscaled data. Since its publication in late 2015, the use of DP4+ to solve controversial natural products has substantially grown, with several predictions being confirmed by total synthesis. To date, the structures of more than 200 natural products were determined with the aid of DP4+. However, all that glitters is not gold. Besides its intrinsic limitations, on many occasions it has been improperly used with potentially important consequences on the quality of the assignment. Herein we present a critical revision on how the scientific community has been using DP4+, exploring the strengths of the method and how to obtain optimal results from it. We also analyze the weaknesses of DP4+, and the paths to by-pass them to maximize the confidence in the structural elucidation.
Collapse
Affiliation(s)
- Maribel O Marcarino
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - Soledad Cicetti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - María M Zanardi
- Instituto de Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina, Av. Pellegrini 3314, Rosario 2000, Argentina.
| | - Ariel M Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
20
|
Li J, Tao H, Lei XX, Zhang H, Zhou X, Liu Y, Li Y, Yang B. Arthriniumsteroids A-D, four new steroids from the soft coral-derived fungus Simplicillium lanosoniveum SCSIO41212. Steroids 2021; 171:108831. [PMID: 33836206 DOI: 10.1016/j.steroids.2021.108831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/08/2021] [Accepted: 03/28/2021] [Indexed: 01/30/2023]
Abstract
Four new steroids derivatives, namely arthriniumsteroids A - D (1-4), together with two known compounds, were isolated from the soft coral-derived fungus Simplicillium lanosoniveum SCSIO41212. Their structures were elucidated by spectroscopic analysis and by comparison with those reported in the literature. The absolute configuration of 2 was confirmed by single-crystal X-ray diffraction. In bioassay, all compounds showed weak inhibitory activities against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 cells.
Collapse
Affiliation(s)
- Jixing Li
- Pharmacy School of Guilin Medical University, Guilin 541004, China
| | - Huaming Tao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xin-Xin Lei
- Pharmacy School of Guilin Medical University, Guilin 541004, China
| | - Han Zhang
- Pharmacy School of Guilin Medical University, Guilin 541004, China
| | - Xuefeng Zhou
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Yonghong Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Yunqiu Li
- Pharmacy School of Guilin Medical University, Guilin 541004, China.
| | - Bin Yang
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China.
| |
Collapse
|
21
|
Metabolites of Marine Sediment-Derived Fungi: Actual Trends of Biological Activity Studies. Mar Drugs 2021; 19:md19020088. [PMID: 33557071 PMCID: PMC7913796 DOI: 10.3390/md19020088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Marine sediments are characterized by intense degradation of sedimenting organic matter in the water column and near surface sediments, combined with characteristically low temperatures and elevated pressures. Fungi are less represented in the microbial communities of sediments than bacteria and archaea and their relationships are competitive. This results in wide variety of secondary metabolites produced by marine sediment-derived fungi both for environmental adaptation and for interspecies interactions. Earlier marine fungal metabolites were investigated mainly for their antibacterial and antifungal activities, but now also as anticancer and cytoprotective drug candidates. This review aims to describe low-molecular-weight secondary metabolites of marine sediment-derived fungi in the context of their biological activity and covers research articles published between January 2016 and November 2020.
Collapse
|
22
|
Meng ZH, Sun TT, Zhao GZ, Yue YF, Chang QH, Zhu HJ, Cao F. Marine-derived fungi as a source of bioactive indole alkaloids with diversified structures. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:44-61. [PMID: 37073395 PMCID: PMC10077242 DOI: 10.1007/s42995-020-00072-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/09/2020] [Indexed: 05/03/2023]
Abstract
Marine-derived fungi are well known as rich sources of bioactive natural products. Growing evidences indicated that indole alkaloids, isolated from a variety of marine-derived fungi, have attracted considerable attention for their diverse, challenging structural complexity and promising bioactivities, and therefore, indole alkaloids have potential to be pharmaceutical lead compounds. Systemic compilation of the relevant literature. In this review, we demonstrated a comprehensive overview of 431 new indole alkaloids from 21 genera of marine-derived fungi with an emphasis on their structures and bioactivities, covering literatures published during 1982-2019.
Collapse
Affiliation(s)
- Zhi-Hui Meng
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Tian-Tian Sun
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Guo-Zheng Zhao
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Yu-Fei Yue
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Qing-Hua Chang
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Hua-Jie Zhu
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Fei Cao
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| |
Collapse
|
23
|
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021; 38:362-413. [PMID: 33570537 DOI: 10.1039/d0np00089b] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
24
|
Meroterpenoids produced by fungi: Occurrence, structural diversity, biological activities, and their molecular targets. Eur J Med Chem 2020; 209:112860. [PMID: 33032085 DOI: 10.1016/j.ejmech.2020.112860] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
Meroterpenoids are partially derived from the terpenoids, distributing widely in the plants, animals and fungi. The complex structures and diverse bioactivities of meroterpenoids have attracted more attention for chemists and pharmacologists. Since the first review summarized by Geris in 2009, there are absent of systematic reviews reported about meroterpenoids from the higher and lower fungi up to now. In the past decades, myriads of meroterpenoids were discovered, and it is necessary to summarize these meroterpenoids about their unique structures and promising bioactivities. In this review, we use a new classification method based on the non-terpene precursors, and also highlight the structural features, bioactivity of natural meroterpenoids from the higher and lower fungi covering the period of September 2008 to February 2020. A total of 709 compounds were discussed and cited the 182 references. Meanwhile, we also primarily summarize their occurrence, structural diversity, biological activities, and molecular targets.
Collapse
|
25
|
Jiang M, Wu Z, Guo H, Liu L, Chen S. A Review of Terpenes from Marine-Derived Fungi: 2015-2019. Mar Drugs 2020; 18:E321. [PMID: 32570903 PMCID: PMC7345631 DOI: 10.3390/md18060321] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Marine-derived fungi are a significant source of pharmacologically active metabolites with interesting structural properties, especially terpenoids with biological and chemical diversity. In the past five years, there has been a tremendous increase in the rate of new terpenoids from marine-derived fungi being discovered. In this updated review, we examine the chemical structures and bioactive properties of new terpenes from marine-derived fungi, and the biodiversity of these fungi from 2015 to 2019. A total of 140 research papers describing 471 new terpenoids of six groups (monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, triterpenes, and meroterpenes) from 133 marine fungal strains belonging to 34 genera were included. Among them, sesquiterpenes, meroterpenes, and diterpenes comprise the largest proportions of terpenes, and the fungi genera of Penicillium, Aspergillus, and Trichoderma are the dominant producers of terpenoids. The majority of the marine-derived fungi are isolated from live marine matter: marine animals and aquatic plants (including mangrove plants and algae). Moreover, many terpenoids display various bioactivities, including cytotoxicity, antibacterial activity, lethal toxicity, anti-inflammatory activity, enzyme inhibitor activity, etc. In our opinion, the chemical diversity and biological activities of these novel terpenoids will provide medical and chemical researchers with a plenty variety of promising lead compounds for the development of marine drugs.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| |
Collapse
|
26
|
Willems T, De Mol ML, De Bruycker A, De Maeseneire SL, Soetaert WK. Alkaloids from Marine Fungi: Promising Antimicrobials. Antibiotics (Basel) 2020; 9:antibiotics9060340. [PMID: 32570899 PMCID: PMC7345139 DOI: 10.3390/antibiotics9060340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/20/2023] Open
Abstract
Resistance of pathogenic microorganisms against antimicrobials is a major threat to contemporary human society. It necessitates a perpetual influx of novel antimicrobial compounds. More specifically, Gram− pathogens emerged as the most exigent danger. In our continuing quest to search for novel antimicrobial molecules, alkaloids from marine fungi show great promise. However, current reports of such newly discovered alkaloids are often limited to cytotoxicity studies and, moreover, neglect to discuss the enigma of their biosynthesis. Yet, the latter is often a prerequisite to make them available through sufficiently efficient processes. This review aims to summarize novel alkaloids with promising antimicrobial properties discovered in the past five years and produced by marine fungi. Several discovery strategies are summarized, and knowledge gaps in biochemical production routes are identified. Finally, links between the structure of the newly discovered molecules and their activity are proposed. Since 2015, a total of 35 new antimicrobial alkaloids from marine fungi were identified, of which 22 showed an antibacterial activity against Gram− microorganisms. Eight of them can be classified as narrow-spectrum Gram− antibiotics. Despite this promising ratio of novel alkaloids active against Gram− microorganisms, the number of newly discovered antimicrobial alkaloids is low, due to the narrow spectrum of discovery protocols that are used and the fact that antimicrobial properties of newly discovered alkaloids are barely characterized. Alternatives are proposed in this review. In conclusion, this review summarizes novel findings on antimicrobial alkaloids from marine fungi, shows their potential as promising therapeutic candidates, and hints on how to further improve this potential.
Collapse
|
27
|
Chemical Diversity and Biological Activities of Meroterpenoids from Marine Derived-Fungi: A Comprehensive Update. Mar Drugs 2020; 18:md18060317. [PMID: 32549331 PMCID: PMC7345968 DOI: 10.3390/md18060317] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022] Open
Abstract
Meroterpenoids are a class of hybrid natural products, partially derived from a mixed terpenoid pathway. They possess remarkable structural features and relevant biological and pharmacological activities. Marine-derived fungi are a rich source of meroterpenoids featuring structural diversity varying from simple to complex molecular architectures. A combination of a structural variability and their myriad of bioactivities makes meroterpenoids an interesting class of naturally occurring compounds for chemical and pharmacological investigation. In this review, a comprehensive literature survey covering the period of 2009–2019, with 86 references, is presented focusing on chemistry and biological activities of various classes of meroterpenoids isolated from fungi obtained from different marine hosts and environments.
Collapse
|
28
|
Yuan B, Liu D, Guan X, Yan Y, Zhang J, Zhang Y, Yang D, Ma M, Lin W. Piperazine ring formation by a single-module NRPS and cleavage by an α-KG-dependent nonheme iron dioxygenase in brasiliamide biosynthesis. Appl Microbiol Biotechnol 2020; 104:6149-6159. [PMID: 32436033 DOI: 10.1007/s00253-020-10678-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 10/24/2022]
Abstract
Brasiliamides are a class of piperazine-containing alkaloids produced by Penicillium brasilianum with a range of pharmaceutical activities. The mechanism of brasiliamide biosynthesis, including piperazine ring formation and multiple tailoring modifications, still remains unclear. In this study, the biosynthetic gene cluster of brasiliamides, brs, was identified from the marine-derived fungal strain Penicillium brasilianum WZXY-M122-9. Deletion of a histone deacetylase-encoding gene using a CRISPR/Cas9 gene editing system led to the production of a new compound, namely brasiliamide I (1). The brs-encoded single-module nonribosomal peptide synthetase (NRPS) BrsA is involved in the formation of the piperazine skeleton of brasiliamides. Full-length BrsA protein (113.6 kDa) was purified, and reconstitution of enzymatic activity in vitro confirmed that BrsA stereoselectively accepts L-phenylalanine as the substrate. Multiple deletion of tailoring genes and analysis of purified proteins in vitro enabled us to propose a brasiliamide biosynthetic pathway. In the tailoring steps, an α-ketoglutarate (KG)-dependent nonheme iron dioxygenase, BrsJ, was identified to catalyze piperazine ring cleavage during biosynthesis of brasiliamide A (2). KEY POINTS: The gene cluster encoding brasiliamide biosynthesis, brs, is identified. Deletion of a histone deacetylase-encoding gene produces brasiliamide I. BrsA catalyzes brasiliamide piperazine skeleton formation. BrsJ catalyzes piperazine ring cleavage to produce brasiliamide A. Graphical abstract.
Collapse
Affiliation(s)
- Bochuan Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China
| | - Xin Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China
| | - Yunchen Yan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China
| | - Jianping Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China
| | - Yiping Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, MNR, Xiamen, 361005, People's Republic of China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China.
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China. .,Institute of Ocean Research, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
29
|
Zhu XC, Huang GL, Mei RQ, Wang B, Sun XP, Luo YP, Xu J, Zheng CJ. One new α, β-unsaturated 7-ketone sterol from the mangrove-derived fungus Phomopsis sp.MGF222. Nat Prod Res 2020; 35:3970-3976. [PMID: 32290694 DOI: 10.1080/14786419.2020.1752210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A new α,β-unsaturated 7-ketone sterol, 5β,6β-epoxy-3β, 15α-dihydroxy-(22E,24R)-ergosta-8(14),22-dien-7-one (1), along with five known sterone derivatives, 5β,6β-epoxy-3β,7α-dihydroxy-(22E,24R)-ergosta-8(14),22-dien-15-one (2), 5β,6β-epoxy-3β,7α,9α-trihydroxy-(22E,24R)-ergosta-8(14),22-dien-15-one (3), 3β,9α,15α-trihydroxy-(22E,24R)-10(5→4)-abeo-ergosta-6,8(14),22-trien-5-one (4), 3,15-dihydroxyl-(22E,24R)-ergosta-5,8(14),22-trien-7-one (5) and (22E,24R)-ergosta-4,6,8(14),22-tetraen-3,15-dione (6) were isolated from the mangrove-derived fungus Phomopsis sp. MGF222. Their structures were established on the basis of extensive spectroscopic data and comparison with the data of literature. Compound 2 showed weak antibacterial activity against Micrococcus tenuis with the MIC value of 28.2 (±0.52) μM. Compound 5 exhibited moderate antibacterial activity against Staphylococcus aureus with the MIC value of 14.6 (±0.47) μM.
Collapse
Affiliation(s)
- Xiao-Chen Zhu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan, People's Republic of China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, People's Republic of China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, People's Republic of China
| | - Guo-Lei Huang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, People's Republic of China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, People's Republic of China
| | - Rong-Qing Mei
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, People's Republic of China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, People's Republic of China
| | - Bin Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, People's Republic of China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, People's Republic of China
| | - Xue-Ping Sun
- College of pharmacy, Guangxi University of Chinese Medicine, Nanning, People's Republic of China
| | - You-Ping Luo
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, People's Republic of China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, People's Republic of China
| | - Jing Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan, People's Republic of China
| | - Cai-Juan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, People's Republic of China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, People's Republic of China
| |
Collapse
|
30
|
Liu YF, Yue YF, Feng LX, Zhu HJ, Cao F. Asperienes A-D, Bioactive Sesquiterpenes from the Marine-Derived Fungus Aspergillus flavus. Mar Drugs 2019; 17:md17100550. [PMID: 31561527 PMCID: PMC6836145 DOI: 10.3390/md17100550] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022] Open
Abstract
Marine-derived fungi of the genera Aspergillus could produce novel compounds with significant bioactivities. Among these fungi, the strain Aspergillus flavus is notorious for its mutagenic mycotoxins production. However, some minor components with certain toxicities from A. flavus have not been specifically surveyed and might have potent biological activities. Our investigation of the marine-derived fungus Aspergillus flavus CF13-11 cultured in solid medium led to the isolation of four C-6′/C-7′ epimeric drimane sesquiterpene esters, asperienes A–D (1–4). Their absolute configurations were assigned by electronic circular dichroism (ECD) and Snatzke’s methods. This is the first time that two pairs of C-6′/C-7′ epimeric drimane sesquiterpene esters have successfully been separated. Aperienes A–D (1–4) displayed potent bioactivities towards four cell lines with the IC50 values ranging from 1.4 to 8.3 μM. Interestingly, compounds 1 and 4 exhibited lower toxicities than 2 and 3 toward normal GES-1 cells, indicating more potential for development as an antitumor agent in the future.
Collapse
Affiliation(s)
- Yun-Feng Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
- College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Yu-Fei Yue
- Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| | - Li-Xi Feng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| | - Hua-Jie Zhu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| | - Fei Cao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
- College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|