1
|
He ZD, Tesch R, Eslamibidgoli MJ, Eikerling MH, Kowalski PM. Low-spin state of Fe in Fe-doped NiOOH electrocatalysts. Nat Commun 2023; 14:3498. [PMID: 37311755 DOI: 10.1038/s41467-023-38978-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/23/2023] [Indexed: 06/15/2023] Open
Abstract
Doping with Fe boosts the electrocatalytic performance of NiOOH for the oxygen evolution reaction (OER). To understand this effect, we have employed state-of-the-art electronic structure calculations and thermodynamic modeling. Our study reveals that at low concentrations Fe exists in a low-spin state. Only this spin state explains the large solubility limit of Fe and similarity of Fe-O and Ni-O bond lengths measured in the Fe-doped NiOOH phase. The low-spin state renders the surface Fe sites highly active for the OER. The low-to-high spin transition at the Fe concentration of ~ 25% is consistent with the experimentally determined solubility limit of Fe in NiOOH. The thermodynamic overpotentials computed for doped and pure materials, η = 0.42 V and 0.77 V, agree well with the measured values. Our results indicate a key role of the low-spin state of Fe for the OER activity of Fe-doped NiOOH electrocatalysts.
Collapse
Affiliation(s)
- Zheng-Da He
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany
| | - Rebekka Tesch
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52062, Aachen, Germany
| | - Mohammad J Eslamibidgoli
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany
| | - Michael H Eikerling
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52062, Aachen, Germany
| | - Piotr M Kowalski
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany.
- JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany.
| |
Collapse
|
2
|
Correcher V, Boronat C, Garcia-Guinea J, Benavente J, Rivera-Montalvo T. Thermoluminescence characterization of natural and synthetic irradiated Ce-monazites. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
3
|
Sun J, Cheng M, Ye T, Li B, Wei Y, Zheng H, Zheng H, Zhou M, Piao JG, Li F. Nanocarrier-based delivery of arsenic trioxide for hepatocellular carcinoma therapy. Nanomedicine (Lond) 2022; 17:2037-2054. [PMID: 36789952 DOI: 10.2217/nnm-2022-0250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a severe threat to human health and economic development. Despite many attempts at HCC treatment, most are inevitably affected by the genetic instability and variability of tumor cells. Arsenic trioxide (ATO) has shown to be effective in HCC. However, time-consuming challenges, especially the optimal concentration in tumor tissue and bioavailability of ATO, remain to be overcome for its transition from the bench to the bedside. To bypass these issues, nanotechnology-based delivery systems have been developed for prevention, diagnosis, monitoring and treatment in recent years. This article is a systematic overview of the latest contributions and detailed insights into ATO-loaded nanocarriers, with particular attention paid to strategies for improving the efficacy of nanocarriers of ATO.
Collapse
Affiliation(s)
- Jiang Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengying Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Tingxian Ye
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bin Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yinghui Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hangsheng Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hongyue Zheng
- Libraries of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Meiqi Zhou
- Department of Oncology Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ji-Gang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology & Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology & Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
4
|
Encapsulation of 67Cu therapeutic radiometal in luminescent lanthanide phosphate core and core-shell nanoparticles. Appl Radiat Isot 2022; 186:110296. [DOI: 10.1016/j.apradiso.2022.110296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022]
|
5
|
Synthesis and structural investigation of churchite-type REPO4·2H2O (RE = Y, Gd, Dy) nanocrystals. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Leys JM, Ji Y, Klinkenberg M, Kowalski PM, Schlenz H, Neumeier S, Bosbach D, Deissmann G. Monazite-Type SmPO 4 as Potential Nuclear Waste Form: Insights into Radiation Effects from Ion-Beam Irradiation and Atomistic Simulations. MATERIALS 2022; 15:ma15103434. [PMID: 35629458 PMCID: PMC9146725 DOI: 10.3390/ma15103434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
Single-phase monazite-type ceramics are considered as potential host matrices for the conditioning of separated plutonium and minor actinides. Sm-orthophosphates were synthesised and their behaviour under irradiation was investigated with respect to their long-term performance in the repository environment. Sintered SmPO4 pellets and thin lamellae were irradiated with 1, 3.5, and 7 MeV Au ions, up to fluences of 5.1 × 1014 ions cm-2 to simulate ballistic effects of recoiling nuclei resulting from α-decay of incorporated actinides. Threshold displacement energies for monazite-type SmPO4 subsequently used in SRIM/TRIM simulations were derived from atomistic simulations. Raman spectra obtained from irradiated lamellae revealed vast amorphisation at the highest fluence used, although local annealing effects were observed. The broadened, but still discernible, band of the symmetrical stretching vibration in SmPO4 and the negligible increase in P-O bond lengths suggest that amorphisation of monazite is mainly due to a breaking of Ln-O bonds. PO4 groups show structural disorder in the local environment but seem to behave as tight units. Annealing effects observed during the irradiation experiment and the distinctively lower dose rates incurred in actinide bearing waste forms and potential α-radiation-induced annealing effects indicate that SmPO4-based waste forms have a high potential for withstanding amorphisation.
Collapse
Affiliation(s)
- Julia M. Leys
- Nuclear Waste Management and Reactor Safety, Institute of Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH (FZJ), 52425 Jülich, Germany; (Y.J.); (M.K.); (P.M.K.); (H.S.); (D.B.); (G.D.)
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
- Correspondence: (J.M.L.); (S.N.)
| | - Yaqi Ji
- Nuclear Waste Management and Reactor Safety, Institute of Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH (FZJ), 52425 Jülich, Germany; (Y.J.); (M.K.); (P.M.K.); (H.S.); (D.B.); (G.D.)
| | - Martina Klinkenberg
- Nuclear Waste Management and Reactor Safety, Institute of Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH (FZJ), 52425 Jülich, Germany; (Y.J.); (M.K.); (P.M.K.); (H.S.); (D.B.); (G.D.)
| | - Piotr M. Kowalski
- Nuclear Waste Management and Reactor Safety, Institute of Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH (FZJ), 52425 Jülich, Germany; (Y.J.); (M.K.); (P.M.K.); (H.S.); (D.B.); (G.D.)
- Theory and Computation of Energy Materials, Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich GmbH (FZJ), 52425 Jülich, Germany
| | - Hartmut Schlenz
- Nuclear Waste Management and Reactor Safety, Institute of Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH (FZJ), 52425 Jülich, Germany; (Y.J.); (M.K.); (P.M.K.); (H.S.); (D.B.); (G.D.)
- Materials Synthesis and Processing, Institute of Energy and Climate Research (IEK-1), Forschungszentrum Jülich GmbH (FZJ), 52425 Jülich, Germany
| | - Stefan Neumeier
- Nuclear Waste Management and Reactor Safety, Institute of Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH (FZJ), 52425 Jülich, Germany; (Y.J.); (M.K.); (P.M.K.); (H.S.); (D.B.); (G.D.)
- Correspondence: (J.M.L.); (S.N.)
| | - Dirk Bosbach
- Nuclear Waste Management and Reactor Safety, Institute of Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH (FZJ), 52425 Jülich, Germany; (Y.J.); (M.K.); (P.M.K.); (H.S.); (D.B.); (G.D.)
| | - Guido Deissmann
- Nuclear Waste Management and Reactor Safety, Institute of Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH (FZJ), 52425 Jülich, Germany; (Y.J.); (M.K.); (P.M.K.); (H.S.); (D.B.); (G.D.)
| |
Collapse
|
7
|
Plutonium-Doped Monazite and Other Orthophosphates—Thermodynamics and Experimental Data on Long-Term Behavior. SUSTAINABILITY 2021. [DOI: 10.3390/su13031203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The paper consists of two main parts: a microscopic and spectroscopic investigation of the single crystal of 17-year-old 238Pu-doped Eu-monazite, and a theoretical calculation of the properties of several structural types of orthophosphates. It is shown that actinide-doped monazite is prone to the formation of mechanically weak, poorly crystalline crust, presumably consisting of rhabdophane. Its formation is likely promoted by the formation of peroxides and, potentially, acidic compounds, due to the radiolysis of atmospheric moisture. The calculations of mixing the enthalpies and Gibbs energies of binary solid solutions of Pu and rare earth element (REE) phosphates that were performed for the principal structural types—monazite, xenotime, rhabdophane—show that, in the case of light REEs, the plutonium admixture is preferentially redistributed into the rhabdophane. This process strongly affects the behavior of actinides, leached from a monazite-based waste form. The applications of these results for the development of actinide waste forms are discussed. The current data on the behavior of real actinide-doped monazite suggest that this type of ceramic waste form is not very resistant, even in relatively short time periods.
Collapse
|