1
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
2
|
Wang F, Kramer TS, Yan B, Zhu L, Zhu Y, Heeres A, Ciolca D, Jan Heeres H, He S. Enhanced Bio-BTX Formation by Catalytic Pyrolysis of Glycerol with In Situ Produced Toluene as the Cofeed. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:5731-5737. [PMID: 38638549 PMCID: PMC11022236 DOI: 10.1021/acssuschemeng.4c00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
The catalytic coconversion of glycerol and toluene (93/7 wt %) over a technical H-ZSM-5/Al2O3 (60-40 wt %) catalyst was studied, aiming for enhanced production of biobased benzene, toluene, and xylenes (bio-BTX). When using glycerol/toluene cofeed with a mass ratio of 93/7 wt %, a peak BTX carbon yield of 29.7 ± 1.1 C.% (at time on stream (TOS) of 1.5-2.5 h), and an overall BTX carbon yield of 28.7 C.% (during TOS of 8.5 h) were obtained, which are considerably higher than those (19.1 ± 0.4 C.% and 11.0 C.%) for glycerol alone. Synergetic effects when cofeeding toluene on the peak and overall BTX carbon yields were observed and quantified, showing a relative increase of 3.1% and 30.0% for the peak and overall BTX carbon yield (based on the feedstock). These findings indicate that the strategy of cofeeding in situ produced toluene for the conversion of glycerol to aromatics has potential to increase BTX yields. In addition, BTX production on the catalyst (based on the fresh catalyst during the first run for TOS of 8.5 h and without regeneration) is significantly improved to 0.547 ton ton-1catalyst (excluding the 76% of toluene product that is 0.595 ton ton-1catalyst for the recycle in the cofeed) for glycerol/toluene cofeed, which was 0.426 ton ton-1catalyst for glycerol alone. In particular, this self-sufficient toluene product recycling strategy is advantageous for the production and selectivity (relative increase of 84.4% and 43.5% during TOS of 8.5 h) of biobased xylenes.
Collapse
Affiliation(s)
- Fukang Wang
- Joint
International Research Laboratory of Circular Carbon, Nanjing Tech University, 211816 Nanjing, P. R. China
| | - Thomas Sjouke Kramer
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Bin Yan
- Joint
International Research Laboratory of Circular Carbon, Nanjing Tech University, 211816 Nanjing, P. R. China
| | - Lin Zhu
- Joint
International Research Laboratory of Circular Carbon, Nanjing Tech University, 211816 Nanjing, P. R. China
| | - Yuezhao Zhu
- Joint
International Research Laboratory of Circular Carbon, Nanjing Tech University, 211816 Nanjing, P. R. China
| | - Andre Heeres
- Hanze
University of Applied Sciences, 9747 AS Groningen, The Netherlands
| | | | - Hero Jan Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Songbo He
- Joint
International Research Laboratory of Circular Carbon, Nanjing Tech University, 211816 Nanjing, P. R. China
| |
Collapse
|
3
|
Masudi A, Muraza O, Jusoh NWC, Ubaidillah U. Improvements in the stability of biodiesel fuels: recent progress and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14104-14125. [PMID: 36585583 PMCID: PMC9803405 DOI: 10.1007/s11356-022-25048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Fewer fossil fuel deposits, price volatility, and environmental concerns have intensified biofuel-based studies. Saccharification, gasification, and pyrolysis are some of the potential methods of producing carbohydrate-based fuels, while lipid extraction is the preferred method of producing biodiesel and green diesel. Over the years, multiple studies have attempted to identify an ideal catalyst as well as optimize the abovementioned methods to produce higher yields at a lower cost. Therefore, this present study comprehensively examined the factors affecting biodiesel stability. Firstly, isomerization, which is typically used to reduce unsaturated fatty acid content, was found to improve oxidative stability as well as maintain and improve cold flow properties. Meanwhile, polymers, surfactants, or small molecules with low melting points were found to improve the cold flow properties of biodiesel. Meanwhile, transesterification with an enzyme could be used to remove monoacylglycerols from oil feedstock. Furthermore, combining two natural antioxidants could potentially slow lipid oxidation if stainless steel, carbon steel, or aluminum are used as biodiesel storage materials. This present review also recommends combining green diesel and biodiesel to improve stability. Furthermore, green diesel can be co-produced at oil refineries that are more selective and have a limited supply of hydrogen. Lastly, next-generation farming should be examined to avoid competing interests in food and energy as well as to improve agricultural efficiency.
Collapse
Affiliation(s)
- Ahmad Masudi
- Clean Energy and Chemical Engineering, University of Science and Technology, 217, Gajeong-Ro Yuseong-Gu, Daejeon, Republic of Korea
- Clean Energy Research Centre, Korea Institute of Science and Technology, Cheongryang, P.O. Box 131, Seoul, 136-791, Republic of Korea
| | - Oki Muraza
- Research & Technology Innovation, Pertamina, Sopo Del Building, 51St Fl. Jl. Mega Kuningan Barat, Jakarta Pusat, 12950, Indonesia.
| | - Nurfatehah Wahyuny Che Jusoh
- Department of Chemical and Environmental Engineering, Malaysia - Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Ubaidillah Ubaidillah
- Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, J1. Ir. Sutami 36A, Kentingan, Surakarta, Central Java, 57126, Indonesia
| |
Collapse
|
4
|
Heterogeneous Catalysts for Conversion of Biodiesel-Waste Glycerol into High-Added-Value Chemicals. Catalysts 2022. [DOI: 10.3390/catal12070767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The valuable products produced from glycerol transformation have become a research route that attracted considerable benefits owing to their huge volumes in recent decades (as a result of biodiesel production as a byproduct) as well as a myriad of chemical and biological techniques for transforming glycerol into high-value compounds, such as fuel additives, biofuels, precursors and other useful chemicals, etc. Biodiesel has presented another challenge in the considerable increase in its byproduct (glycerol). This review provides a recent update on the transformation of glycerol with an exclusive focus on the various catalysts’ performance in designing reaction operation conditions. The different products observed and cataloged in this review involved hydrogen, acetol, acrolein, ethylene glycol, and propylene glycol (1,3-propanediol and 1,2-propanediol) from reforming and dehydration and hydrogenolysis reactions of glycerol conversions. The future prospects and critical challenges are finally presented.
Collapse
|
5
|
Design and optimization of an intensified process to produce acrylic acid as added product value from glycerol generated in the biodiesel production. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Waste materials from palm oil plant as exploratory catalysts for FAME biodiesel production. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02185-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
He S, Kramer TS, Santosa DS, Heeres A, Heeres HJ. Catalytic conversion of glycerol and co-feeds (fatty acids, alcohols, and alkanes) to bio-based aromatics: remarkable and unprecedented synergetic effects on catalyst performance. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2022; 24:941-949. [PMID: 35177952 PMCID: PMC8785961 DOI: 10.1039/d1gc03531b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Glycerol is an attractive bio-based platform chemical that can be converted to a variety of bio-based chemicals. We here report a catalytic co-conversion strategy where glycerol in combination with a second (bio-)feed (fatty acids, alcohols, alkanes) is used for the production of bio-based aromatics (BTX). Experiments were performed in a fixed bed reactor (10 g catalyst loading and WHSV of (co-)feed of 1 h-1) at 550 °C using a technical H-ZSM-5/Al2O3 catalyst. Synergistic effects of the co-feeding on the peak BTX carbon yield, product selectivity, total BTX productivity, catalyst life-time, and catalyst regenerability were observed and quantified. Best results were obtained for the co-conversion of glycerol and oleic acid (45/55 wt%), showing a peak BTX carbon yield of 26.7 C%. The distribution of C and H of the individual co-feeds in the BTX product was investigated using an integrated fast pyrolysis-GC-Orbitrap MS unit, showing that the aromatics are formed from both glycerol and the co-feed. The results of this study may be used to develop optimized co-feeding strategies for BTX formation.
Collapse
Affiliation(s)
- Songbo He
- Green Chemical Reaction Engineering, Engineering and Technology Institute Groningen, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Thomas Sjouke Kramer
- Green Chemical Reaction Engineering, Engineering and Technology Institute Groningen, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Dian Sukmayanda Santosa
- Green Chemical Reaction Engineering, Engineering and Technology Institute Groningen, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Andre Heeres
- Hanze University of Applied Sciences Zernikeplein 11 9747 AS Groningen The Netherlands
| | - Hero Jan Heeres
- Green Chemical Reaction Engineering, Engineering and Technology Institute Groningen, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
8
|
Kurniawan T, Nuryoto N, Fitri NS, Sofiyah HS, Bilad MR, Faungnawakij K, Thongratkaew S. Catalytic acetalization of glycerol waste over alkali-treated natural clinoptilolite. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
9
|
Challenges & Opportunities on Catalytic Conversion of Glycerol to Value Added Chemicals. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.3.10524.525-547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With the rapid expansion of biodiesel industry, its main by-product, crude glycerol, is anticipated to reach a global production of 6 million tons in 2025. It is actually a worrying phenomenon as glycerol could potentially emerge as an excessive product with little value. Glycerol, an alcohol and oxygenated chemical from biodiesel production, has essentially enormous potential to be converted into higher value-added chemicals. Using glycerol as a starting material for value-added chemical production will create a new demand on the glycerol market such as lactic acid, propylene glycol, alkyl lactatehydrogen, olefins and others. This paper briefly reviews the recent development on value-added chemicals derived from glycerol through catalytic conversion of refined and crude glycerol that have been proven to be promising in research stage with commercialization potential, or have been put in a corporate marketable production. Despite of the huge potential of products that can be transformed from glycerol, there are still numerous challenges to be addressed and discussed that include catalyst design and robustness; focus on crude or refined glycerol; reactor technology, reaction mechanism and thermodynamic analysis; and overall process commercial viability. The discussion will hopefully provide new insights on justified direction to focus on for glycerol transformation technology. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
10
|
1,2—Propanediol Production from Glycerol Derived from Biodiesel’s Production: Technical and Economic Study. ENERGIES 2021. [DOI: 10.3390/en14165081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For every nine tons of produced biodiesel, there is another ton of glycerol as a byproduct. Therefore, glycerol prices dropped significantly worldwide in recent years; the more significant biodiesel production is, the more glycerol exists as a byproduct. glycerol prices also impact the biodiesel manufacturing business, as it could be sold according to its refinement grade. The primary objective of this work was to evaluate the economic potential of the production of 1,2-propanediol derived from the biodiesel produced in Colombia. A plant to produce 1,2-propanediol via catalytic hydrogenation of glycerol in a trickle-bed reactor was designed. The plant comprised a reaction scheme where non-converted excess hydrogen was recycled, and the heat generated in the reactor was recovered. The reactor effluent was sent to a separation train where 98% m/m purity 1,2-propanediol was attained. Capital and operational costs were estimated from the process simulation. The net present value (NPV) and the modified internal return rate (MIRR) of the plant were used to assess the viability of the process. Their sensitivity to key input variables was evaluated to find the viability limits of the project. The economic potential of the 1,2-propanediol was calculated in USD 1.2/kg; for the base case, the NPV and the MIRR were USD 54.805 million and 22.56%, respectively, showing that, for moderate variations in products and raw material prices, the process is economically viable.
Collapse
|
11
|
Comparative study of catalytic conversion of glycerol, a by-product of transesterification, to cyclic hydrocarbons using MCM-22, ZSM-5 and alumina. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2021-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Recently chemical consumption has increased due to the growth of human population and industrialization. Depleting fuel reserves and increase in chemicals rise has led and researcher to focus on alternative bio based chemicals. Glycerol which is produced as a major byproduct from the trans-esterification reaction of fatty acids for producing biodiesel has been used in this work for conversion to value added products. Conversion of glycerol in presence of alumina, MCM-22 (pure silica based mesoporous catalyst) and ZSM-5 (Si-Al based catalyst) is investigated at different temperature and catalyst weight in a fixed bed reactor. The conversion of glycerol was found to be maximum in presence of alumina whereas maximum liquid products were obtained with ZSM-5. GC/MS analysis confirmed the production of Furan compounds in higher fraction with both alumina as well as ZSM-5 showing the importance of acid sites for the glycerol conversion to higher hydrocarbons. The GC/MS analysis of liquid product obtained in presence of catalyst was also observed with high area% of unconverted glycerol. The order is as follow 54% (MCM-22) > 44% (ZSM-5) > 42.2% (Alumina). For the investigation of the conversion for varying catalyst weight (0–3 g with 0.5 g weight difference), reaction temperature were varied between 450 and 550 °C. Different values of n = 0, 1, 2 etc. were used for the fitting of the respective plot. A change in reaction rate and the rate constant indicated that with the change of temperature, reaction rate was increased. The rate constant value obtained between 0.09 and 0.12 h−1. In all cases 450 °C and catalyst weight of 2.5 g was obtained as optimum for higher liquid yield. TGA analysis of spent catalyst also showed that alumina give high yield (∼50% by weight) of coke as compared to ZSM-5 and MCM-22.
Collapse
|
12
|
Kaur J, Sarma AK, Jha MK, Gera P. Rib shaped carbon catalyst derived from Zea mays L. cob for ketalization of glycerol. RSC Adv 2020; 10:43334-43342. [PMID: 35519680 PMCID: PMC9058247 DOI: 10.1039/d0ra08203a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022] Open
Abstract
In the present work, the activated carbon was prepared from agricultural waste by an activation method using sodium hydroxide as an activating agent. The prepared AC-CC has been characterized by N2 adsorption-desorption isotherms, thermogravimetric analysis (TGA-DTA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD). The porous carbon was thus obtained with a specific surface area of 13.901 m2 g-1 and a total pore volume of 0.011 cm3 g-1. The catalytic activity of the activated carbon has been studied for the ketalization of glycerol and provides maximum glycerol conversion of 72.12% under optimum conditions. The activity of the AC-CC also did not change appreciably for three consecutive batch reaction sequences. The spent catalyst was further analysed for elemental composition using XPS and surface morphology was studied using SEM. There was little deformation in the structure although the percentage of carbon remains almost same (∼72%) as that of the original catalyst, which contributes to the reduction of conversion efficiency of glycerol to solketal by 5% in the 3rd consecutive reaction. Thus, AC-CC obtained from Zea mays L. cob could be a very promising renewable catalyst for glycerol conversion into solketal as a fuel-additive.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Chemical Engineering, Dr B R Ambedkar NIT Jalandhar Punjab India
| | - Anil Kumar Sarma
- Sardar Swaran Singh National Institute of Bio Energy Kapurthala Punjab India +911822507414
| | - Mithilesh Kumar Jha
- Department of Chemical Engineering, Dr B R Ambedkar NIT Jalandhar Punjab India
| | - Poonam Gera
- Sardar Swaran Singh National Institute of Bio Energy Kapurthala Punjab India +911822507414
| |
Collapse
|