1
|
Li A, Nicolas J, Mura S. Unlocking the Potential of Hybrid Nanocomposite Hydrogels: Design, Mechanical Properties and Biomedical Performances. ADVANCED FUNCTIONAL MATERIALS 2025; 35. [DOI: 10.1002/adfm.202409670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Indexed: 01/06/2025]
Abstract
AbstractHybrid nanocomposite hydrogels consist of the homogeneous incorporation of nano‐objects in a hydrogel matrix. The latter, whether made of natural or synthetic materials, possesses a microporous, soft structure that makes it an ideal host for a variety of polymer and lipid‐based nano‐objects as well as metal‐ and silica‐based ones. By carefully choosing the composition and the proportions of the different constituents, hybrid hydrogels can display a wide array of properties, from simple enhancement of mechanical characteristics to specific bioactivity. This review aims to provide an overview of the state of the art in hybrid hydrogels highlighting key aspects that make them a promising choice for a variety of biomedical applications. Strategies for the preparation of hybrid hydrogels are discussed by covering the selection of individual components. The review will also explore the physico‐chemical and rheological characterization of these materials, which is essential for understanding their structure and function, ultimately satisfying specifications for the intended use. Successful examples of biomedical applications will also be presented, and the main challenges to be met will be discussed, with the aim of stimulating the research community to exploit the full potential of these materials.
Collapse
Affiliation(s)
- Anqi Li
- Université Paris‐Saclay CNRS Institut Galien Paris‐Saclay Orsay 91400 France
| | - Julien Nicolas
- Université Paris‐Saclay CNRS Institut Galien Paris‐Saclay Orsay 91400 France
| | - Simona Mura
- Université Paris‐Saclay CNRS Institut Galien Paris‐Saclay Orsay 91400 France
| |
Collapse
|
2
|
Najihah AZ, Hassan MZ, Ismail Z. Current trend on preparation, characterization and biomedical applications of natural polysaccharide-based nanomaterial reinforcement hydrogels: A review. Int J Biol Macromol 2024; 271:132411. [PMID: 38821798 DOI: 10.1016/j.ijbiomac.2024.132411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
The tunable properties of hydrogels have led to their widespread use in various biomedical applications such as wound treatment, drug delivery, contact lenses, tissue engineering and 3D bioprinting. Among these applications, natural polysaccharide-based hydrogels, which are fabricated from materials like agarose, alginate, chitosan, hyaluronic acid, cellulose, pectin and chondroitin sulfate, stand out as preferred choices due to their biocompatibility and advantageous fabrication characteristics. Despite the inherent biocompatibility, polysaccharide-based hydrogels on their own tend to be weak in physiochemical and mechanical properties. Therefore, further reinforcement in the hydrogel is necessary to enhance its suitability for specific applications, ensuring optimal performance in diverse settings. Integrating nanomaterials into hydrogels has proven effective in improving the overall network and performance of the hydrogel. This approach also addresses the limitations associated with pure hydrogels. Next, an overview of recent trends in the fabrication and applications of hydrogels was presented. The characterization of hydrogels was further discussed, focusing specifically on the reinforcement achieved with various hydrogel materials used so far. Finally, a few challenges associated with hydrogels by using polysaccharide-based nanomaterial were also presented.
Collapse
Affiliation(s)
- A Z Najihah
- Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Mohamad Zaki Hassan
- Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Zarini Ismail
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
3
|
Mashaqbeh H, Al-Ghzawi B, BaniAmer F. Exploring the Formulation and Approaches of Injectable Hydrogels Utilizing Hyaluronic Acid in Biomedical Uses. Adv Pharmacol Pharm Sci 2024; 2024:3869387. [PMID: 38831895 PMCID: PMC11147673 DOI: 10.1155/2024/3869387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 05/11/2024] [Indexed: 06/05/2024] Open
Abstract
The characteristics of injectable hydrogels make them a prime contender for various biomedical applications. Hyaluronic acid is an essential component of the matrix surrounding the cells; moreover, hyaluronic acid's structural and biochemical characteristics entice researchers to develop injectable hydrogels for various applications. However, due to its poor mechanical properties, several strategies are used to produce injectable hyaluronic acid hydrogel. This review summarizes published studies on the production of injectable hydrogels based on hyaluronic acid polysaccharide polymers and the biomedical field's applications for these hydrogel systems. Hyaluronic acid-based hydrogels are divided into two categories based on their injectability mechanisms: in situ-forming injectable hydrogels and shear-thinning injectable hydrogels. Many crosslinking methods are used to create injectable hydrogels; chemical crosslinking techniques are the most frequently investigated technique. Hybrid injectable hydrogel systems are widely investigated by blending hyaluronic acid with other polymers or nanoparticulate systems. Injectable hyaluronic acid hydrogels were thoroughly investigated and proven to demonstrate potential in various medical fields, including delivering drugs and cells, tissue repair, and wound dressings.
Collapse
Affiliation(s)
- Hadeia Mashaqbeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Batool Al-Ghzawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Fatima BaniAmer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
4
|
Zhao LY, Wang XY, Wen ML, Pan NN, Yin XQ, An MW, Wang L, Liu Y, Song JB. Advances in injectable hydrogels for radiation-induced heart disease. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1031-1063. [PMID: 38340315 DOI: 10.1080/09205063.2024.2314364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Radiological heart damage (RIHD) is damage caused by unavoidable irradiation of the heart during chest radiotherapy, with a long latency period and a progressively increasing proportion of delayed cardiac damage due to conventional doses of chest radiotherapy. There is a risk of inducing diseases such as acute/chronic pericarditis, myocarditis, delayed myocardial fibrosis and damage to the cardiac conduction system in humans, which can lead to myocardial infarction or even death in severe cases. This paper details the pathogenesis of RIHD and gives potential targets for treatment at the molecular and cellular level, avoiding the drawbacks of high invasiveness and immune rejection due to drug therapy, medical device implantation and heart transplantation. Injectable hydrogel therapy has emerged as a minimally invasive tissue engineering therapy to provide necessary mechanical support to the infarcted myocardium and to act as a carrier for various bioactive factors and cells to improve the cellular microenvironment in the infarcted area and induce myocardial tissue regeneration. Therefore, this paper combines bioactive factors and cellular therapeutic mechanisms with injectable hydrogels, presents recent advances in the treatment of cardiac injury after RIHD with different injectable gels, and summarizes the therapeutic potential of various types of injectable hydrogels as a potential solution.
Collapse
Affiliation(s)
- Lu-Yao Zhao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xin-Yue Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Ling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Ning-Ning Pan
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xing-Qi Yin
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Wen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian-Bo Song
- Shanghai NewMed Medical Corporation, Shanghai, China
| |
Collapse
|
5
|
Yang P, Li Z, Fang B, Liu L. Self-healing hydrogels based on biological macromolecules in wound healing: A review. Int J Biol Macromol 2023; 253:127612. [PMID: 37871725 DOI: 10.1016/j.ijbiomac.2023.127612] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The complete healing of skin wounds has been a challenge in clinical treatment. Self-healing hydrogels are special hydrogels formed by distinctive physicochemically reversible bonds, and they are considered promising biomaterials in the biomedical field owing to their inherently good drug-carrying capacity as well as self-healing and repair abilities. Moreover, natural polymeric materials have received considerable attention in skin tissue engineering owing to their low cytotoxicity, low immunogenicity, and excellent biodegradation rates. In this paper, we review recent advances in the design of self-healing hydrogels based on natural polymers for skin-wound healing applications. First, we outline a variety of natural polymers that can be used to construct self-healing hydrogel systems and highlight the advantages and disadvantages of different natural polymers. We then describe the principle of self-healing hydrogels in terms of two different crosslinking mechanisms-physical and chemical-and dissect their performance characteristics based on the practical needs of skin-trauma applications. Next, we outline the biological mechanisms involved in the healing of skin wounds and describe the current application strategies for self-healing hydrogels based on these mechanisms. Finally, we analyze and summarize the challenges and prospects of natural-material-based self-healing hydrogels for skin applications.
Collapse
Affiliation(s)
- Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhen Li
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
6
|
Morozova SM, Korzhikova-Vlakh EG. Fibrillar Hydrogel Based on Cellulose Nanocrystals Crosslinked via Diels-Alder Reaction: Preparation and pH-Sensitive Release of Benzocaine. Polymers (Basel) 2023; 15:4689. [PMID: 38139941 PMCID: PMC10748274 DOI: 10.3390/polym15244689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
A fibrillar hydrogel was obtained by covalent crosslinking via Diels-Alder reaction of two types of cellulose nanocrystals (CNCs) with furan and maleimide groups. Gelation has been studied at various ratios of components and temperatures in the range from 20 to 60 °C. It was shown that the rheological properties of the hydrogel can be optimized by varying the concentration and ratio of components. Due to the rigid structure of the CNCs, the hydrogel could be formed at a concentration of at least 5 wt%; however, it almost does not swell either in water with pH 5 or 7 or in the HBSS buffer. The introduction of aldehyde groups into the CNCs allows for the conjugation of physiologically active molecules containing primary amino groups due to the formation of imine bonds. Here, we used benzocaine as a model drug for conjugation with CNC hydrogel. The resulting drug-conjugated hydrogel demonstrated the stability of formulation at pH 7 and a pH-sensitive release of benzocaine due to the accelerated hydrolytic cleavage of the imine bond at pH < 7. The developed drug-conjugated hydrogel is promising as wound dressings for local anesthesia.
Collapse
Affiliation(s)
- Sofia M. Morozova
- Center of Fluid Physics and Soft Matter, N.E. Bauman Moscow State Technical University, 2nd Baumanskaya St. 5/1, 105005 Moscow, Russia
| | - Evgenia G. Korzhikova-Vlakh
- Institute of Macromolecular Compounds of Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia;
| |
Collapse
|
7
|
Kaur K, Murphy CM. Advances in the Development of Nano-Engineered Mechanically Robust Hydrogels for Minimally Invasive Treatment of Bone Defects. Gels 2023; 9:809. [PMID: 37888382 PMCID: PMC10606921 DOI: 10.3390/gels9100809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Injectable hydrogels were discovered as attractive materials for bone tissue engineering applications given their outstanding biocompatibility, high water content, and versatile fabrication platforms into materials with different physiochemical properties. However, traditional hydrogels suffer from weak mechanical strength, limiting their use in heavy load-bearing areas. Thus, the fabrication of mechanically robust injectable hydrogels that are suitable for load-bearing environments is of great interest. Successful material design for bone tissue engineering requires an understanding of the composition and structure of the material chosen, as well as the appropriate selection of biomimetic natural or synthetic materials. This review focuses on recent advancements in materials-design considerations and approaches to prepare mechanically robust injectable hydrogels for bone tissue engineering applications. We outline the materials-design approaches through a selection of materials and fabrication methods. Finally, we discuss unmet needs and current challenges in the development of ideal materials for bone tissue regeneration and highlight emerging strategies in the field.
Collapse
Affiliation(s)
- Kulwinder Kaur
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Ciara M. Murphy
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin (TCD), D02 PN40 Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin (TCD), D02 PN40 Dublin, Ireland
| |
Collapse
|
8
|
Sekar MP, Suresh S, Zennifer A, Sethuraman S, Sundaramurthi D. Hyaluronic Acid as Bioink and Hydrogel Scaffolds for Tissue Engineering Applications. ACS Biomater Sci Eng 2023. [PMID: 37115515 DOI: 10.1021/acsbiomaterials.3c00299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Bioprinting is an additive manufacturing technique that focuses on developing living tissue constructs using bioinks. Bioink is crucial in determining the stability of printed patterns, which remains a major challenge in bioprinting. Thus, the choices of bioink composition, modifications, and cross-linking methods are being continuously researched to augment the clinical translation of bioprinted constructs. Hyaluronic acid (HA) is a naturally occurring polysaccharide with the repeating unit of N-acetyl-glucosamine and d-glucuronic acid disaccharides. It is present in the extracellular matrix (ECM) of tissues (skin, cartilage, nerve, muscle, etc.) with a wide range of molecular weights. Due to the nature of its chemical structure, HA could be easily subjected to chemical modifications and cross-linking that would enable better printability and stability. These interesting properties have made HA an ideal choice of bioinks for developing tissue constructs for regenerative medicine applications. In this Review, the physicochemical properties, reaction chemistry involved in various cross-linking strategies, and biomedical applications of HA have been elaborately discussed. Further, the features of HA bioinks, emerging strategies in HA bioink preparations, and their applications in 3D bioprinting have been highlighted. Finally, the current challenges and future perspectives in the clinical translation of HA-based bioinks are outlined.
Collapse
Affiliation(s)
- Muthu Parkkavi Sekar
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Shruthy Suresh
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| |
Collapse
|
9
|
Zhou S, Yang D, Yang D, Guo Y, Hu R, Li Y, Zan X, Zhang X. Injectable, Self-Healing and Multiple Responsive Histamine Modified Hyaluronic Acid Hydrogels with Potentialities in Drug Delivery, Antibacterial and Tissue Engineering. Macromol Rapid Commun 2023; 44:e2200674. [PMID: 36205697 DOI: 10.1002/marc.202200674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/25/2022] [Indexed: 11/08/2022]
Abstract
Hydrogels are 3D network structures composed of physically or chemically crosslinked, hydrophilic molecules. Compared with conventional hydrogels with static and permanent network structures, injectable and responsive hydrogels generated from dynamic networks, have attracted increasing attention from various disciplines due to their wide-ranging applications in tissue engineering, drug delivery, soft robotics, etc. Herein, an injectable self-healing and multiple-responsive hyaluronic acid (HA)- histamine (His)/metal hydrogel is developed by modifying His onto HA and the subsequent, dynamic coordination between imidazole and metal ions. The pH-responsive and mechanical behaviors exhibited by the HA-His/metal hydrogels are tunable with the kinds and the concentrations of metal ions. The HA-His/Zr4+ hydrogels demonstrate a moldable capability at a neutral pH and a multi-stimulus-responsive capability when exposed to a weak alkaline environment and hyaluronidase, which inhibits bacterial growth and biofilm formation. Biocompatibilities and accelerated wound healing are demonstrated in vitro and in vivo and are thoroughly investigated and well characterized. The HA-His/Zr4+ hydrogel has great potential in various biomedical applications, such as pH- and hyaluronidase-responsive sustained release, antibacterial, and implantable materials for tissue engineering.
Collapse
Affiliation(s)
- Sijie Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, P. R. China.,Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| | - Dejun Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, P. R. China.,Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| | - Dong Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Yan Guo
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan, 411201, P. R. China
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yuan Li
- Burn and Wound Healing Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, P. R. China.,Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| | - Xingxing Zhang
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P. R. China
| |
Collapse
|
10
|
Morozova SM. Recent Advances in Hydrogels via Diels-Alder Crosslinking: Design and Applications. Gels 2023; 9:gels9020102. [PMID: 36826272 PMCID: PMC9956184 DOI: 10.3390/gels9020102] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
The Diels-Alder (DA) reaction is a promising tool for obtaining covalently crosslinked hydrogels due to its reaction bioorthogonality, the absence of by-products, and the application of mild conditions without a catalyst. The resulting hydrogels are in demand for use in various fields of materials science and biomedicine. While the dynamic nature of the cycloaddition of diene and dienophile has previously been used extensively for the fabrication of self-healing materials, it has only recently spread to the expansion of the functional properties of polymer gels for bioapplications. This review describes strategies and recent examples of obtaining hydrogels based on the DA reaction, demonstrating that the emerging functional properties go beyond self-healing. The types of classifications of hydrogels are listed, depending on the type of reaction and the nature of the components. Examples of obtaining hydrogels based on the normal and inverse electron-demand DA reaction, as well as the application of hydrogels for cell culture, drug delivery, injectable gels, and wound dressings, are considered. In conclusion, possible developmental directions are discussed, including the use of diene-dienophile pairs with a low temperature for the reversal of DA reaction, the modification of nanoparticles by diene and/or dienophile fragments, and new applications such as ink for 3D printing, sensing hydrogels, etc.
Collapse
Affiliation(s)
- Sofia M Morozova
- Center NTI "Digital Materials Science: New Materials and Substances", N.E. Bauman Moscow State Technical University, 2nd Baumanskaya St. 5/1, Moscow 105005, Russia
| |
Collapse
|
11
|
Vitus V, Razak NAA, Hao TQ, Zeimaran E, Suhaimi NAS, Wan Kamarul Zaman WS, Zaman WSWK. Polysaccharide-Based Injectable Nanocomposite Hydrogels for Wound Healing Application. SUSTAINABLE MATERIAL FOR BIOMEDICAL ENGINEERING APPLICATION 2023:395-414. [DOI: 10.1007/978-981-99-2267-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
12
|
Mokhtarinia K, Rezvanian P, Masaeli E. Sustainable hydrogel-based cell therapy. SUSTAINABLE HYDROGELS 2023:443-470. [DOI: 10.1016/b978-0-323-91753-7.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Grieco M, Ursini O, Palamà IE, Gigli G, Moroni L, Cortese B. HYDRHA: Hydrogels of hyaluronic acid. New biomedical approaches in cancer, neurodegenerative diseases, and tissue engineering. Mater Today Bio 2022; 17:100453. [PMID: 36254248 PMCID: PMC9568881 DOI: 10.1016/j.mtbio.2022.100453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 10/30/2022] Open
Abstract
In the last decade, hyaluronic acid (HA) has attracted an ever-growing interest in the biomedical engineering field as a biocompatible, biodegradable, and chemically versatile molecule. In fact, HA is a major component of the extracellular matrix (ECM) and is essential for the maintenance of cellular homeostasis and crosstalk. Innovative experimental strategies in vitro and in vivo using three-dimensional (3D) HA systems have been increasingly reported in studies of diseases, replacement of tissue and organ damage, repairing wounds, and encapsulating stem cells for tissue regeneration. The present work aims to give an overview and comparison of recent work carried out on HA systems showing advantages, limitations, and their complementarity, for a comprehensive characterization of their use. A special attention is paid to the use of HA in three important areas: cancer, diseases of the central nervous system (CNS), and tissue regeneration, discussing the most innovative experimental strategies. Finally, perspectives within and beyond these research fields are discussed.
Collapse
Affiliation(s)
- Maddalena Grieco
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
| | - Ornella Ursini
- National Research Council-Nanotechnology Institute (CNR Nanotec), 00185, Rome, Italy
| | - Ilaria Elena Palamà
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
| | - Giuseppe Gigli
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
- Department of Mathematics and Physics “Ennio De Giorgi” University of Salento, Via Arnesano, 73100, Lecce, Italy
| | - Lorenzo Moroni
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, the Netherlands
| | - Barbara Cortese
- National Research Council-Nanotechnology Institute (CNR Nanotec), 00185, Rome, Italy
| |
Collapse
|
14
|
Mortier C, Costa D, Oliveira M, Haugen H, Lyngstadaas S, Blaker J, Mano J. Advanced hydrogels based on natural macromolecules: chemical routes to achieve mechanical versatility. MATERIALS TODAY CHEMISTRY 2022; 26:101222. [DOI: 10.1016/j.mtchem.2022.101222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Khunmanee S, Park H. Three-Dimensional Culture for In Vitro Folliculogenesis in the Aspect of Methods and Materials. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1242-1257. [PMID: 35822548 DOI: 10.1089/ten.teb.2021.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro ovarian follicle culture is a reproduction technique used to obtain fertilizable oocytes, for overcoming fertility issues due to premature ovarian failure. This requires the establishment of an in vitro culture model that is capable of better simulating the in vivo ovarian growth environment. Two-dimensional (2D) culture systems have been successfully set up in rodent models. However, they are not suitable for larger animal models as the follicles of larger animals cultured in 2D culture systems often lose their shape due to dysfunction in the gap junctions. Three-dimensional (3D) culture systems are more suitable for maintaining follicle architecture, and therefore are proposed for the successful in vitro culturing of follicles in various animal models. The role of different methods, scaffolds, and suspension cultures in supporting follicle development has been studied to provide direction for improving in vitro follicle culture technologies. The three major strategies for in vitro 3D follicle cultures are discussed in this article. First, the in vitro culture systems, such as microfluidics, hanging drop, hydrogels, and 3D-printing, are reviewed. We have focused on the 3D hydrogel system as it uses different materials for supporting follicular growth and oocyte maturation in several animal models and in humans. We have also discussed the criteria used for biomaterial evaluations such as solid concentration, elasticity, and rigidity. In addition, future research directions for advancing in vitro 3D follicle culture system are discussed. Impact statement A new frontier in assisted reproductive technology is in vitro tissue or follicle culture, particularly for fertility preservation. The in vitro three-dimensional (3D) culture technique enhances follicular development and provides mature oocytes, overcoming the limitations of traditional in vitro two-dimensional cultures. Polymer biomaterials have good compatibility and retain the physiological structure of follicles in the 3D culture system. Utilizing hybrid in vitro culture materials by merging matrix, hydrogel, and unique patterned materials may facilitate follicular growth in the future.
Collapse
Affiliation(s)
- Sureerat Khunmanee
- Department of Integrative Engineering, Chung-Ang University, Seoul, Korea
| | - Hansoo Park
- Department of Integrative Engineering, Chung-Ang University, Seoul, Korea
| |
Collapse
|
16
|
Wang S, Tavakoli S, Parvathaneni RP, Nawale GN, Oommen OP, Hilborn J, Varghese OP. Dynamic covalent crosslinked hyaluronic acid hydrogels and nanomaterials for biomedical applications. Biomater Sci 2022; 10:6399-6412. [PMID: 36214100 DOI: 10.1039/d2bm01154a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Hyaluronic acid (HA), one of the main components of the extracellular matrix (ECM), is extensively used in the design of hydrogels and nanoparticles for different biomedical applications due to its critical role in vivo, degradability by endogenous enzymes, and absence of immunogenicity. HA-based hydrogels and nanoparticles have been developed by utilizing different crosslinking chemistries. The development of such crosslinking chemistries indicates that even subtle differences in the structure of reactive groups or the procedure of crosslinking may have a profound impact on the intended mechanical, physical and biological outcomes. There are widespread examples of modified HA polymers that can form either covalently or physically crosslinked biomaterials. More recently, studies have been focused on dynamic covalent crosslinked HA-based biomaterials since these types of crosslinking allow the preparation of dynamic structures with the ability to form in situ, be injectable, and have self-healing properties. In this review, HA-based hydrogels and nanomaterials that are crosslinked by dynamic-covalent coupling (DCC) chemistry have been critically assessed.
Collapse
Affiliation(s)
- Shujiang Wang
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Shima Tavakoli
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Rohith Pavan Parvathaneni
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Ganesh N Nawale
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Jöns Hilborn
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Oommen P Varghese
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| |
Collapse
|
17
|
Yang X, Wang B, Peng D, Nie X, Wang J, Yu CY, Wei H. Hyaluronic Acid‐Based Injectable Hydrogels for Wound Dressing and Localized Tumor Therapy: A Review. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Xu Yang
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Bin Wang
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Dongdong Peng
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Xiaobo Nie
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Jun Wang
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Cui-Yun Yu
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Hua Wei
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| |
Collapse
|
18
|
Yazdi MK, Sajadi SM, Seidi F, Rabiee N, Fatahi Y, Rabiee M, Dominic C.D. M, Zarrintaj P, Formela K, Saeb MR, Bencherif SA. Clickable Polysaccharides for Biomedical Applications: A Comprehensive Review. Prog Polym Sci 2022; 133:101590. [PMID: 37779922 PMCID: PMC10540641 DOI: 10.1016/j.progpolymsci.2022.101590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in materials science and engineering highlight the importance of designing sophisticated biomaterials with well-defined architectures and tunable properties for emerging biomedical applications. Click chemistry, a powerful method allowing specific and controllable bioorthogonal reactions, has revolutionized our ability to make complex molecular structures with a high level of specificity, selectivity, and yield under mild conditions. These features combined with minimal byproduct formation have enabled the design of a wide range of macromolecular architectures from quick and versatile click reactions. Furthermore, copper-free click chemistry has resulted in a change of paradigm, allowing researchers to perform highly selective chemical reactions in biological environments to further understand the structure and function of cells. In living systems, introducing clickable groups into biomolecules such as polysaccharides (PSA) has been explored as a general approach to conduct medicinal chemistry and potentially help solve healthcare needs. De novo biosynthetic pathways for chemical synthesis have also been exploited and optimized to perform PSA-based bioconjugation inside living cells without interfering with their native processes or functions. This strategy obviates the need for laborious and costly chemical reactions which normally require extensive and time-consuming purification steps. Using these approaches, various PSA-based macromolecules have been manufactured as building blocks for the design of novel biomaterials. Clickable PSA provides a powerful and versatile toolbox for biomaterials scientists and will increasingly play a crucial role in the biomedical field. Specifically, bioclick reactions with PSA have been leveraged for the design of advanced drug delivery systems and minimally invasive injectable hydrogels. In this review article, we have outlined the key aspects and breadth of PSA-derived bioclick reactions as a powerful and versatile toolbox to design advanced polymeric biomaterials for biomedical applications such as molecular imaging, drug delivery, and tissue engineering. Additionally, we have also discussed the past achievements, present developments, and recent trends of clickable PSA-based biomaterials such as 3D printing, as well as their challenges, clinical translatability, and future perspectives.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - S. Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
- Department of Phytochemistry, SRC, Soran University, 624, KRG, Iraq
| | - Farzad Seidi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Midhun Dominic C.D.
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
19
|
Hou X, Zhong D, Chen H, Gu Z, Gong Q, Ma X, Zhang H, Zhu H, Luo K. Recent advances in hyaluronic acid-based nanomedicines: Preparation and application in cancer therapy. Carbohydr Polym 2022; 292:119662. [PMID: 35725165 DOI: 10.1016/j.carbpol.2022.119662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022]
|
20
|
Chen J, Zhai Z, Edgar KJ. Recent advances in polysaccharide-based in situ forming hydrogels. Curr Opin Chem Biol 2022; 70:102200. [PMID: 35998387 DOI: 10.1016/j.cbpa.2022.102200] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/03/2022]
Abstract
Polysaccharides comprise an important class of natural polymers; they are abundant, diverse, polyfunctional, typically benign, and are biodegradable. Using polysaccharides to design in situ forming hydrogels is an attractive and important field of study since many polysaccharide-based hydrogels exhibit desirable characteristics including self-healing, responsiveness to environmental stimuli, and injectability. These characteristics are particularly useful for biomedical applications. This review will discuss recent discoveries in polysaccharide-based in situ forming hydrogels, including network architecture designs, curing mechanisms, physical and chemical properties, and potential applications.
Collapse
Affiliation(s)
- Junyi Chen
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhenghao Zhai
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kevin J Edgar
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States; Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
21
|
Lv H, Tang H, Cai Y, Wu T, Peng D, Yao Y, Xu X. Highly Stable Metal‐Free Long‐Persistent Luminescent Copolymer for Low Flicker AC‐LEDs. Angew Chem Int Ed Engl 2022; 61:e202204209. [DOI: 10.1002/anie.202204209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Hongyu Lv
- College of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Haitao Tang
- College of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Yiyu Cai
- College of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Tao Wu
- Ningbo Cuiying Chemical Technology Co., Ltd Ningbo 315000 P. R. China
| | - Dongliang Peng
- College of Materials Science and Engineering Xiamen University Xiamen 361005 P. R. China
| | - Yuan Yao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province Westlake University Hangzhou 310024 P. R. China
| | - Xuhui Xu
- College of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| |
Collapse
|
22
|
Lv H, Tang H, Cai Y, Wu T, Peng D, Yao Y, Xu X. Highly Stable Metal‐Free Long‐Persistent Luminescent Copolymer for Low Flicker AC‐LEDs. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hongyu Lv
- College of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Haitao Tang
- College of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Yiyu Cai
- College of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Tao Wu
- Ningbo Cuiying Chemical Technology Co., Ltd Ningbo 315000 P. R. China
| | - Dongliang Peng
- College of Materials Science and Engineering Xiamen University Xiamen 361005 P. R. China
| | - Yuan Yao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province Westlake University Hangzhou 310024 P. R. China
| | - Xuhui Xu
- College of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| |
Collapse
|
23
|
Phenol-Hyaluronic Acid Conjugates: Correlation of Oxidative Crosslinking Pathway and Adhesiveness. Polymers (Basel) 2021; 13:polym13183130. [PMID: 34578030 PMCID: PMC8470095 DOI: 10.3390/polym13183130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Hyaluronic acid (HA) is a natural polysaccharide with great biocompatibility for a variety of biomedical applications, such as tissue scaffolds, dermal fillers, and drug-delivery carriers. Despite the medical impact of HA, its poor adhesiveness and short-term in vivo stability limit its therapeutic efficacy. To overcome these shortcomings, a versatile modification strategy for the HA backbone has been developed. This strategy involves tethering phenol moieties on HA to provide both robust adhesiveness and intermolecular cohesion and can be used for oxidative crosslinking of the polymeric chain. However, a lack of knowledge still exists regarding the interchangeable phenolic adhesion and cohesion depending on the type of oxidizing agent used. Here, we reveal the correlation between phenolic adhesion and cohesion upon gelation of two different HA–phenol conjugates, HA–tyramine and HA–catechol, depending on the oxidant. For covalent/non-covalent crosslinking of HA, oxidizing agents, horseradish peroxidase/hydrogen peroxide, chemical oxidants (e.g., base, sodium periodate), and metal ions, were utilized. As a result, HA–catechol showed stronger adhesion properties, whereas HA–tyramine showed higher cohesion properties. In addition, covalent bonds allowed better adhesion compared to that of non-covalent bonds. Our findings are promising for designing adhesive and mechanically robust biomaterials based on phenol chemistry.
Collapse
|
24
|
Chakraborty A, Roy A, Ravi SP, Paul A. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances. Biomater Sci 2021; 9:6337-6354. [PMID: 34397056 DOI: 10.1039/d1bm00605c] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Three-dimensional (3D) bioprinting is an emerging tissue engineering approach that aims to develop cell or biomolecule-laden, complex polymeric scaffolds with high precision, using hydrogel-based "bioinks". Hydrogels are water-swollen, highly crosslinked polymer networks that are soft, quasi-solid, and can support and protect biological materials. However, traditional hydrogels have weak mechanical properties and cannot retain complex structures. They must be reinforced with physical and chemical manipulations to produce a mechanically resilient bioink. Over the past few years, we have witnessed an increased use of nanoparticles and biological moiety-functionalized nanoparticles to fabricate new bioinks. Nanoparticles of varied size, shape, and surface chemistries can provide a unique solution to this problem primarily because of three reasons: (a) nanoparticles can mechanically reinforce hydrogels through physical and chemical interactions. This can favorably influence the bioink's 3D printability and structural integrity by modulating its rheological, biomechanical, and biochemical properties, allowing greater flexibility to print a wide range of structures; (b) nanoparticles can introduce new bio-functionalities to the hydrogels, which is a key metric of a bioink's performance, influencing both cell-material and cell-cell interactions within the hydrogel; (c) nanoparticles can impart "smart" features to the bioink, making the tissue constructs responsive to external stimuli. Responsiveness of the hydrogel to magnetic field, electric field, pH changes, and near-infrared light can be made possible by the incorporation of nanoparticles. Additionally, bioink polymeric networks with nanoparticles can undergo advanced chemical crosslinking, allowing greater flexibility to print structures with varied biomechanical properties. Taken together, the unique properties of various nanoparticles can help bioprint intricate constructs, bringing the process one step closer to complex tissue structure and organ printing. In this review, we explore the design principles and multifunctional properties of various nanomaterials and nanocomposite hydrogels for potential, primarily extrusion-based bioprinting applications. We illustrate the significance of biocompatibility of the designed nanocomposite hydrogel-based bioink for clinical translation and discuss the different parameters that affect cell fate after cell-nanomaterial interaction. Finally, we critically assess the current challenges of nanoengineering bioinks and provide insight into the future directions of potential hydrogel bioinks in the rapidly evolving field of bioprinting.
Collapse
Affiliation(s)
- Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Avinava Roy
- Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal 711103, India
| | - Shruthi Polla Ravi
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, Department of Chemistry, School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| |
Collapse
|
25
|
Wang F, Chen J, Liu J, Zeng H. Cancer theranostic platforms based on injectable polymer hydrogels. Biomater Sci 2021; 9:3543-3575. [PMID: 33634800 DOI: 10.1039/d0bm02149k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Theranostic platforms that combine therapy with diagnosis not only prevent the undesirable biological responses that may occur when these processes are conducted separately, but also allow individualized therapies for patients. Polymer hydrogels have been employed to provide well-controlled drug release and targeted therapy in theranostics, where injectable hydrogels enable non-invasive treatment and monitoring with a single injection, offering greater patient comfort and efficient therapy. Efforts have been focused on applying injectable polymer hydrogels in theranostic research and clinical use. This review highlights recent progress in the design of injectable polymer hydrogels for cancer theranostics, particularly focusing on the elements/components of theranostic hydrogels, and their cross-linking strategies, structures, and performance with regard to drug delivery/tracking. Therapeutic agents and tracking modalities that are essential components of the theranostic platforms are introduced, and the design strategies, properties and applications of the injectable hydrogels developed via two approaches, namely chemical bonds and physical interactions, are described. The theranostic functions of the platforms are highly dependent on the architecture and components employed for the construction of hydrogels. Challenges currently presented by theranostic platforms based on injectable hydrogels are identified, and prospects of acquiring more comfortable and personalized therapies are proposed.
Collapse
Affiliation(s)
- Feifei Wang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China. and Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
26
|
Barrett-Catton E, Ross ML, Asuri P. Multifunctional Hydrogel Nanocomposites for Biomedical Applications. Polymers (Basel) 2021; 13:856. [PMID: 33799539 PMCID: PMC8001467 DOI: 10.3390/polym13060856] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hydrogels are used for various biomedical applications due to their biocompatibility, capacity to mimic the extracellular matrix, and ability to encapsulate and deliver cells and therapeutics. However, traditional hydrogels have a few shortcomings, especially regarding their physical properties, thereby limiting their broad applicability. Recently, researchers have investigated the incorporation of nanoparticles (NPs) into hydrogels to improve and add to the physical and biochemical properties of hydrogels. This brief review focuses on papers that describe the use of nanoparticles to improve more than one property of hydrogels. Such multifunctional hydrogel nanocomposites have enhanced potential for various applications including tissue engineering, drug delivery, wound healing, bioprinting, and biowearable devices.
Collapse
Affiliation(s)
| | | | - Prashanth Asuri
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA; (E.B.-C.); (M.L.R.)
| |
Collapse
|
27
|
Polysaccharide-based supramolecular drug delivery systems mediated via host-guest interactions of cucurbiturils. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Zhang A, Liu Y, Qin D, Sun M, Wang T, Chen X. Research status of self-healing hydrogel for wound management: A review. Int J Biol Macromol 2020; 164:2108-2123. [DOI: 10.1016/j.ijbiomac.2020.08.109] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/30/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
|
29
|
Hájovská P, Chytil M, Kalina M. Rheological study of albumin and hyaluronan-albumin hydrogels: Effect of concentration, ionic strength, pH and molecular weight. Int J Biol Macromol 2020; 161:738-745. [DOI: 10.1016/j.ijbiomac.2020.06.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022]
|
30
|
Wan Ishak WH, Yong Jia O, Ahmad I. pH-Responsive Gamma-Irradiated Poly(Acrylic Acid)-Cellulose-Nanocrystal-Reinforced Hydrogels. Polymers (Basel) 2020; 12:E1932. [PMID: 32867014 PMCID: PMC7565492 DOI: 10.3390/polym12091932] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
A pH-sensitive poly(acrylic acid) composite hydrogel was successfully synthesized via gamma irradiation and reinforced with cellulosic materials of different sizes. Cellulose was extracted from rice husks via alkali and bleaching treatment, and an acid hydrolysis treatment was performed to extract cellulose nanocrystals (CNCs). Morphological observation of cellulose and CNCs using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed diameters of 22-123 μm and 5-16 nm, respectively. The swelling properties of the fabricated poly(acrylic acid)/cellulosic hydrogels were found to respond to changes in pH, and CNC-reinforced hydrogels performed better than cellulose-reinforced hydrogels. The highly crystalline CNC provided a greater storage modulus, hence acting as a better reinforcing material for poly(acrylic acid)-based hydrogels. SEM showed that hydrogels reinforced with the CNC nanofillers contained a homogeneous pore distribution and produced better interfacial interactions than those reinforced with the cellulose microfillers, thus performing better as hydrogels. These findings demonstrate that gamma-irradiated poly(acrylic acid) hydrogels reinforced with CNCs exhibit a better stimuli response toward pH than poly(acrylic acid) hydrogels reinforced with cellulose.
Collapse
Affiliation(s)
- Wan Hafizi Wan Ishak
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor 43600, Malaysia; (W.H.W.I.); (O.Y.J.)
- Polymer Research Center (PORCE), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor 43600, Malaysia
| | - Oo Yong Jia
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor 43600, Malaysia; (W.H.W.I.); (O.Y.J.)
- Polymer Research Center (PORCE), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor 43600, Malaysia
| | - Ishak Ahmad
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor 43600, Malaysia; (W.H.W.I.); (O.Y.J.)
- Polymer Research Center (PORCE), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor 43600, Malaysia
| |
Collapse
|
31
|
Zhang JW, Dong DD, Guan XY, Zhang EM, Chen YM, Yang K, Zhang YX, Khan MMB, Arfat Y, Aziz Y. Physical Organohydrogels With Extreme Strength and Temperature Tolerance. Front Chem 2020; 8:102. [PMID: 32211372 PMCID: PMC7076117 DOI: 10.3389/fchem.2020.00102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Tough gel with extreme temperature tolerance is a class of soft materials having potential applications in the specific fields that require excellent integrated properties under subzero temperature. Herein, physically crosslinked Europium (Eu)-alginate/polyvinyl alcohol (PVA) organohydrogels that do not freeze at far below 0°C, while retention of high stress and stretchability is demonstrated. These organohydrogels are synthesized through displacement of water swollen in polymer networks of hydrogel to cryoprotectants (e.g., ethylene glycol, glycerol, and d-sorbitol). The organohydrogels swollen water-cryoprotectant binary systems can be recovered to their original shapes when be bent, folded and even twisted after being cooled down to a temperature as low as -20 and -45°C, due to lower vapor pressure and ice-inhibition of cryoprotectants. The physical organohydrogels exhibit the maximum stress (5.62 ± 0.41 MPa) and strain (7.63 ± 0.02), which is about 10 and 2 times of their original hydrogel, due to the synergistic effect of multiple hydrogen bonds, coordination bonds and dense polymer networks. Based on these features, such physically crosslinked organohydrogels with extreme toughness and wide temperature tolerance is a promising soft material expanding the applications of gels in more specific and harsh conditions.
Collapse
Affiliation(s)
- Jing Wen Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, China
| | - Dian Dian Dong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, China
| | - Xiao Yu Guan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, China
| | - En Mian Zhang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yong Mei Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Kuan Yang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, China
| | - Yun Xia Zhang
- Research Center for Semiconductor Materials and Devices, College of Arts and Sciences, Shaanxi University of Science & Technology, Xi'an, China
| | - Malik Muhammad Bilal Khan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, China
| | - Yasir Arfat
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, China
| | - Yasir Aziz
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, China
| |
Collapse
|
32
|
Chen YR, Zhou ZX, Zhang JY, Yuan FZ, Xu BB, Guan J, Han C, Jiang D, Yang YY, Yu JK. Low-Molecular-Weight Heparin-Functionalized Chitosan-Chondroitin Sulfate Hydrogels for Controlled Release of TGF-β3 and in vitro Neocartilage Formation. Front Chem 2019; 7:745. [PMID: 31737612 PMCID: PMC6839338 DOI: 10.3389/fchem.2019.00745] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/17/2019] [Indexed: 12/16/2022] Open
Abstract
Repair of hyaline cartilage remains a huge challenge in clinic because of the avascular and aneural characteristics and the paucity of endogenous repair cells. Recently, tissue engineering technique, possessing unique capacity of repairing large tissue defects, avoiding donor complications and two-stage invasive surgical procedures, has been developed a promising therapeutic strategy for cartilage injury. In this study, we incorporated low-molecular-weight heparin (LMWH) into carboxymethyl chitosan-oxidized chondroitin sulfate (CMC-OCS) hydrogel for loading transforming growth factor-β3 (TGF-β3) as matrix of peripheral blood mesenchymal stem cells (PB-MSCs) to construct tissue-engineered cartilage. Meanwhile, three control hydrogels with or without LMWH and/or TGF-β3 were also prepared. The gelling time, microstructures, mechanical properties, degradation rate, cytotoxicity, and the release of TGF-β3 of different hydrogels were investigated. In vitro experiments evaluated the tri-lineage differentiation potential of PB-MSCs, combined with the proliferation, distribution, viability, morphology, and chondrogenic differentiation. Compared with non-LMWH-hydrogels, LMWH-hydrogels (LMWH-CMC-OCS-TGF-β3) have shorter gelling time, higher mechanical strength, slower degradation rate and more stable and lasting release of TGF-β3. After two weeks of culture in vitro, expression of cartilage-specific genes collagen type-2 (COL-2) and aggrecan (AGC), and secretion of glycosaminoglycan (GAG), and COL-2 proteins in LMWH-CMC-OCS-TGF-β3 group were significantly higher than those in other groups. COL-2 immunofluorescence staining showed that the proportion of COL-2 positive cells and immunofluorescence intensity in LMWH-CMC-OCS-TGF-β3 hydrogel were significantly higher than those in other groups. The LMWH-CMC-OCS-TGF-β3 hydrogel can slowly release TGF-β3 in a long term, and meanwhile the hydrogel can provide a biocompatible microenvironment for the growth and chondrogenic differentiation of PB-MSCs. Thus, LMWH functionalized CMC-OCS hydrogels proposed in this work will be beneficial for constructing functional scaffolds for tissue-engineered cartilage.
Collapse
Affiliation(s)
- You-Rong Chen
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Zhu-Xing Zhou
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Ji-Ying Zhang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Fu-Zhen Yuan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Bing-Bing Xu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jian Guan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Chao Han
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China.,School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Dong Jiang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Yan-Yu Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|