1
|
Karpiel J, Lonchambon P, Dappozze F, Florea I, Dragoe D, Guillard C, Herlin-Boime N. One-Step Synthesis of Cu xO y/TiO 2 Photocatalysts by Laser Pyrolysis for Selective Ethylene Production from Propionic Acid Degradation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:792. [PMID: 36903669 PMCID: PMC10005428 DOI: 10.3390/nano13050792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
In an effort to produce alkenes in an energy-saving way, this study presents for the first time a photocatalytic process that allows for the obtention of ethylene with high selectivity from propionic acid (PA) degradation. To this end, TiO2 nanoparticles (NPs) modified with copper oxides (CuxOy/TiO2) were synthetised via laser pyrolysis. The atmosphere of synthesis (He or Ar) strongly affects the morphology of photocatalysts and therefore their selectivity towards hydrocarbons (C2H4, C2H6, C4H10) and H2 products. Specifically, CuxOy/TiO2 elaborated under He environment presents highly dispersed copper species and favours the production of C2H6 and H2. On the contrary, CuxOy/TiO2 synthetised under Ar involves copper oxides organised into distinct NPs of ~2 nm diameter and promotes C2H4 as the major hydrocarbon product, with selectivity, i.e., C2H4/CO2 as high as 85% versus 1% obtained with pure TiO2.
Collapse
Affiliation(s)
- Juliette Karpiel
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- Institut de Recherche Sur La Catalyse Et l’Environnement De Lyon (IRCELYON), Université Lyon 1, CNRS, Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Pierre Lonchambon
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Frédéric Dappozze
- Institut de Recherche Sur La Catalyse Et l’Environnement De Lyon (IRCELYON), Université Lyon 1, CNRS, Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Ileana Florea
- Laboratory of Physics of Interfaces and Thin Films (LPICM), Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Diana Dragoe
- CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Université Paris-Saclay, 91405 Orsay, France
| | - Chantal Guillard
- Institut de Recherche Sur La Catalyse Et l’Environnement De Lyon (IRCELYON), Université Lyon 1, CNRS, Avenue Albert Einstein, 69626 Villeurbanne, France
| | | |
Collapse
|
2
|
Qiu X, Wan Z, Pu M, Xu X, Ye Y, Hu C. Synthesis and Photocatalytic Activity of Pt-Deposited TiO2 Nanotubes (TNT) for Rhodamine B Degradation. Front Chem 2022; 10:922701. [PMID: 35711961 PMCID: PMC9194477 DOI: 10.3389/fchem.2022.922701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 02/03/2023] Open
Abstract
Dye wastewater has attracted more and more attention because of its high environmental risk. In this study, a novel TiO2 nanotube (TNT) catalyst was prepared and its morphology and structure were characterized. The synthetic catalyst was used to degrade Rhodamine B (RhB) under UV light and evaluated for the application performance. According to the characterization results and degradation properties, the optimum synthetic conditions were selected as 400°C calcination temperature and 10 wt% Pt deposition. As a result, the degradation efficacies were sequenced as TNT-400-Pt > TNT-500-Pt > TNT-400 > TNT-300-Pt. In addition, the effect of pH and initial concentration of RhB were explored, and their values were both increased with the decreased degradation efficacy. While the moderate volume of 11 mm of H2O2 addition owned better performance than that of 0, 6, and 15 mm. Scavengers such as tertbutanol (t-BuOH), disodium ethylenediaminetetraacetate (EDTA-Na2), and nitroblue tetrazolium (NBT) were added during the catalytic process and it proved that superoxide radical anions (O2–•), photogenerated hole (h+) and hydroxyl radical (OH•) were the main active species contributing for RhB removal. For the application, TNT-Pt could deal with almost 100% RhB, Orange G (OG), Methylene blue (MB), and Congo red (CR) within 70 min and still kept more than 50% RhB removal in the fifth recycling use. Therefore, TNT-Pt synthesized in this study is potential to be applied to the dye wastewater treatment.
Collapse
Affiliation(s)
- Xiaojian Qiu
- School of Resources and Environment, Nanchang University, Nanchang, China
| | - Zhenning Wan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Mengjie Pu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Xiuru Xu
- School of Agricultural and Biological Technology, Wenzhou Vocational College of Science and Technology, Zhejiang, China
- *Correspondence: Xiuru Xu, ; Chunhua Hu,
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Chunhua Hu
- School of Resources and Environment, Nanchang University, Nanchang, China
- *Correspondence: Xiuru Xu, ; Chunhua Hu,
| |
Collapse
|
3
|
Esrafili A, Salimi M, jonidi jafari A, Reza Sobhi H, Gholami M, Rezaei Kalantary R. Pt-based TiO2 photocatalytic systems: A systematic review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
TiO2-β-Bi2O3 junction as a leverage for the visible-light activity of TiO2 based catalyst used for environmental applications. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|