1
|
Cao H, Sun Y, Wang L, Pan Y, Li Z, Liang Y. In silico identification of novel inhibitors targeting the DNA-binding domain of the human estrogen receptor alpha. J Steroid Biochem Mol Biol 2021; 213:105966. [PMID: 34416373 DOI: 10.1016/j.jsbmb.2021.105966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022]
Abstract
The human estrogen receptor alpha (ERα) is an important regulator in breast cancer development and progression. The frequent ERα mutations in the ligand-binding domain (LBD) can increase the resistance of antiestrogen drugs, highlighting the need to develop new drugs to target ERα-positive breast cancer. In this study, we combined molecular docking, molecular dynamics simulations and binding free energy calculations to develop a structure-based virtual screening workflow to identify hit compounds capable of interfering with the recognition of ERα by the specific response element of DNA. A druggable pocket on the DNA binding domain (DBD) of ERα was identified as the potential binding site. The hits binding modes were further analyzed to reveal the structural characteristics of the DBD-inhibitor complexes. The core structure of the lead molecules was synthesized and was found to inhibit the E2-induced cell proliferation in MCF-7 cell lines. These findings provide an insight into the structural basis of ligand-ERα for alternate sites beyond the LBD-based pocket. The core structure proposed in this study could potentially be used as the lead molecule for further rational optimization of the antiestrogen drug structure with stronger binding of DBD and higher activity.
Collapse
Affiliation(s)
- Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yuzhen Sun
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yu Pan
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Zhunjie Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
2
|
Caciolla J, Martini S, Spinello A, Pavlin M, Turrini E, Simonelli F, Belluti F, Rampa A, Bisi A, Fimognari C, Zaffaroni N, Gobbi S, Magistrato A. Balanced dual acting compounds targeting aromatase and estrogen receptor α as an emerging therapeutic opportunity to counteract estrogen responsive breast cancer. Eur J Med Chem 2021; 224:113733. [PMID: 34364162 DOI: 10.1016/j.ejmech.2021.113733] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023]
Abstract
Breast Cancer (BC) is a leading cause of death in women, currently affecting 13% of female population worldwide. First-line clinical treatments against Estrogen Receptor positive (ER+) BC rely on suppressing estrogen production, by inhibiting the aromatase (AR) enzyme, or on blocking estrogen-dependent pro-oncogenic signaling, by targeting Estrogen Receptor (ER) α with selective Modulators/Degraders (SERMs/SERDs). The development of dual acting molecules targeting AR and ERα represents a tantalizing alternative strategy to fight ER + BC, reducing the incidence of adverse effects and resistance onset that limit the effectiveness of these gold-standard therapies. Here, in silico design, synthesis, biological evaluation and an atomic-level characterization of the binding and inhibition mechanism of twelve structurally related drug-candidates enable the discovery of multiple compounds active on both AR and ERα in the sub-μM range. The best drug-candidate 3a displayed a balanced low-nanomolar IC50 towards the two targets, SERM activity and moderate selectivity towards a BC cell line. Moreover, most of the studied compounds reduced ERα levels, suggesting a potential SERD activity. This study dissects the key structural traits needed to obtain optimal dual acting drug-candidates, showing that multitarget compounds may be a viable therapeutic option to counteract ER + BC.
Collapse
Affiliation(s)
- Jessica Caciolla
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Silvia Martini
- Fondazione IRCSS Istituto Nazionale Dei Tumori, Via Amadeo 42, 20113, Milano, Italy
| | - Angelo Spinello
- National Research Council of Italy Institute of Materials (CNR-IOM) C/o SISSA, Via Bonomea 265, 34136, Trieste, Italy
| | - Matic Pavlin
- National Research Council of Italy Institute of Materials (CNR-IOM) C/o SISSA, Via Bonomea 265, 34136, Trieste, Italy; Laboratory of Microsensor Structures and Electronics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška Cesta 25, SI-1000 Ljubljana, Slovenia
| | - Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Federica Simonelli
- National Research Council of Italy Institute of Materials (CNR-IOM) C/o SISSA, Via Bonomea 265, 34136, Trieste, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Nadia Zaffaroni
- Fondazione IRCSS Istituto Nazionale Dei Tumori, Via Amadeo 42, 20113, Milano, Italy
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| | - Alessandra Magistrato
- National Research Council of Italy Institute of Materials (CNR-IOM) C/o SISSA, Via Bonomea 265, 34136, Trieste, Italy.
| |
Collapse
|
3
|
Pathological Maintenance and Evolution of Breast Cancer: The Convergence of Irreversible Biological Actions of ER Alpha. ENDOCRINES 2020. [DOI: 10.3390/endocrines2010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Estrogen receptor alpha (ERα) is a modulator of breast cancer maintenance and evolution. Hence, analysis of underlying mechanisms by which ERα operates is of importance for the improvement of the hormonal therapy of the disease. This review focuses on the irreversible character of the mechanism of action of ERα, which also concerns other members of the steroid hormones receptors family. ERα moves in permanence between targets localized especially at the chromatin level to accomplish gene transcriptions imposed by the estrogenic ligands and specific antagonists. Receptor association as at the plasma membrane, where it interacts with other recruitment sites, extends its regulatory potency to growth factors and related peptides through activation of signal transductions pathways. If the latter procedure is suitable for the transcriptions in which the receptor operates as a coregulator of another transcription factor, it is of marginal influence with regard to the direct estrogenic regulation procedure, especially in the context of the present review. Irreversibility of the successive steps of the underlying transcription cycle guarantees maintenance of homeostasis and evolution according to vital necessities. To justify this statement, reported data are essentially described in a holistic view rather than in the context of exhaustive analysis of a molecular event contributing to a specific function as well as in a complementary perspective to elaborate new therapeutic approaches with antagonistic potencies against those tumors promoting ERα properties.
Collapse
|
4
|
Bafna D, Ban F, Rennie PS, Singh K, Cherkasov A. Computer-Aided Ligand Discovery for Estrogen Receptor Alpha. Int J Mol Sci 2020; 21:E4193. [PMID: 32545494 PMCID: PMC7352601 DOI: 10.3390/ijms21124193] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer (BCa) is one of the most predominantly diagnosed cancers in women. Notably, 70% of BCa diagnoses are Estrogen Receptor α positive (ERα+) making it a critical therapeutic target. With that, the two subtypes of ER, ERα and ERβ, have contrasting effects on BCa cells. While ERα promotes cancerous activities, ERβ isoform exhibits inhibitory effects on the same. ER-directed small molecule drug discovery for BCa has provided the FDA approved drugs tamoxifen, toremifene, raloxifene and fulvestrant that all bind to the estrogen binding site of the receptor. These ER-directed inhibitors are non-selective in nature and may eventually induce resistance in BCa cells as well as increase the risk of endometrial cancer development. Thus, there is an urgent need to develop novel drugs with alternative ERα targeting mechanisms that can overcome the limitations of conventional anti-ERα therapies. Several functional sites on ERα, such as Activation Function-2 (AF2), DNA binding domain (DBD), and F-domain, have been recently considered as potential targets in the context of drug research and discovery. In this review, we summarize methods of computer-aided drug design (CADD) that have been employed to analyze and explore potential targetable sites on ERα, discuss recent advancement of ERα inhibitor development, and highlight the potential opportunities and challenges of future ERα-directed drug discovery.
Collapse
Affiliation(s)
| | | | | | | | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (D.B.); (F.B.); (P.S.R.); (K.S.)
| |
Collapse
|