1
|
Liu B, Huang A, Yuan X, Chang X, Yang Z, Lyle K, Kaner RB, Li Y. Laser-Scribed Battery Electrodes for Ultrafast Zinc-Ion Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404796. [PMID: 38809576 DOI: 10.1002/adma.202404796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Indexed: 05/30/2024]
Abstract
Aqueous Zn batteries are promising for large-scale energy storage but are plagued by the lack of high-performance cathode materials that enable high specific capacity, ultrafast charging, and outstanding cycling stability. Here, a laser-scribed nano-vanadium oxide (LNVO) cathode is designed that can simultaneously achieve these properties. The material stores charge through Faradaic redox reactions on/near the surface at fast rates owing to the small grain size of vanadium oxide and interpenetrating 3D graphene network, displaying a surface-controlled capacity contribution (90%-98%). Multiple characterization techniques unambiguously reveal that zinc and hydronium ions co-insert with minimal lattice change upon cycling. It is demonstrated that a high specific capacity of 553 mAh g-1 is achieved at 0.1 A g-1, and an impressive 264 mAh g-1 capacity is retained at 100 A g-1 within 10 s, showing excellent rate capability. The LNVO/Zn can also reach >90% capacity retention after 3000 cycles at a high rate of 30 A g-1, as well as achieving both high energy (369 Wh kg-1) and power densities (56306 W kg-1). Moreover, the LNVO cathode retains its excellent cycling performance when integrated into quasi-solid-state pouch cells, further demonstrating mechanical stability and its potential for practical application in wearable and grid-scale applications.
Collapse
Affiliation(s)
- Bo Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Ailun Huang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Xintong Yuan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Xueying Chang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Zhiyin Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Katelyn Lyle
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Richard B Kaner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Yuzhang Li
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Kumari R, Mendki N, Chandra P. Smartphone-Integrated Automated Sensor Employing Electrochemically Engineered 3D Bimetallic Nanoflowers for Hydrogen Peroxide Quantification in Milk. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11146-11159. [PMID: 38739881 DOI: 10.1021/acs.langmuir.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Hydrogen peroxide (H2O2), one of the reactive oxygen species in living beings, serves as a regulator of various cellular processes. However, excessive peroxide concentrations are linked to oxidative stress and promptly disrupt cellular components, leading to several pathological conditions in the body. Moreover, it is extremely reactive and has a limited lifetime; thus, H2O2 sensing remains a prominent focus of research. Enzymatic sensing probes were widely employed to detect H2O2 in the recent past; however, they are susceptible to intrinsic chemical and thermal instabilities, which decrease the reliability and durability of the surface. This research was designed to come up with a feasible solution to this problem. Herein, a novel nonenzymatic peroxidase-mimic three-dimensional (3D) bimetallic nanoflower has been synergistically engineered for quick sensing of H2O2. The sensor platform showed minimal resistance or enhanced charge transfer properties as well as remarkable analytical capability, having a broad linear range between 0.01 and 1 nM and a detection limit of 1.46 ± 0.07 pM. The probe responded to changes in H2O2 concentration in just 2.10 ± 0.02 s, making it a quick sensing platform for H2O2 tracking. This peroxidase-mimic nanozyme probe showed minimal sensitivity to interferants often seen in real-world sample matrices and possessed good recoveries ranging from 92.88 to 99.09% in milk samples. Further, a facile and user-friendly smartphone application (APP) named "HPeroxide-Check" was developed and integrated into the sensor to check the milk adulteration by detecting H2O2. It processes the current output obtained from the sensing interface and provides real-time peroxide concentrations in milk. The entire procedure of fabricating the probe is a single, highly robust step that takes only 10 min and is coupled with a smartphone APP, highlighting the sensor's quick manufacturing and deployment for automated H2O2 monitoring in industrial and point-of-care settings.
Collapse
Affiliation(s)
- Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi221005, Uttar Pradesh, India
| | - Nachiket Mendki
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi221005, Uttar Pradesh, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi221005, Uttar Pradesh, India
| |
Collapse
|
3
|
Cheng X, Li D, Jiang Y, Huang F, Li S. Advances in Electrochemical Energy Storage over Metallic Bismuth-Based Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 17:21. [PMID: 38203875 PMCID: PMC10780295 DOI: 10.3390/ma17010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Bismuth (Bi) has been prompted many investigations into the development of next-generation energy storage systems on account of its unique physicochemical properties. Although there are still some challenges, the application of metallic Bi-based materials in the field of energy storage still has good prospects. Herein, we systematically review the application and development of metallic Bi-based anode in lithium ion batteries and beyond-lithium ion batteries. The reaction mechanism, modification methodologies and their relationship with electrochemical performance are discussed in detail. Additionally, owing to the unique physicochemical properties of Bi and Bi-based alloys, some innovative investigations of metallic Bi-based materials in alkali metal anode modification and sulfur cathodes are systematically summarized for the first time. Following the obtained insights, the main unsolved challenges and research directions are pointed out on the research trend and potential applications of the Bi-based materials in various energy storage fields in the future.
Collapse
Affiliation(s)
- Xiaolong Cheng
- School of Material Science and Engineering, Anhui University, Hefei 230601, China; (X.C.); (F.H.)
| | - Dongjun Li
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, China;
| | - Yu Jiang
- School of Material Science and Engineering, Anhui University, Hefei 230601, China; (X.C.); (F.H.)
| | - Fangzhi Huang
- School of Material Science and Engineering, Anhui University, Hefei 230601, China; (X.C.); (F.H.)
| | - Shikuo Li
- School of Material Science and Engineering, Anhui University, Hefei 230601, China; (X.C.); (F.H.)
| |
Collapse
|
4
|
Kim D, Mateti S, Yu B, Tanwar K, Cai Q, Jiang H, Fan Y, O'Dell LA, Chen Y. Hybrid Artificial Solid Electrolyte Interphase with Dendrite-Free Lithium Deposition and High Ion Transport Kinetics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52993-53006. [PMID: 36378571 DOI: 10.1021/acsami.2c16604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Interfacial issues and dendritic Li deposition in lithium metal batteries (LMBs) hamper the practical application of liquid or solid-state cells. Here, a hybrid solid electrolyte interphase (SEI), based on hydroxyl-functionalized boron nitride (BN) nanosheets and poly(vinyl alcohol), is designed to solve the unstable nature of the Li anode-electrolyte interface. Rather than acquiring a rich Li halide environment through intense electrolyte decomposition, the hybrid SEI effectively regulates electrolyte decomposition and guarantees uniform Li plating via boosting interfacial Li+ ion transport at the interface. The Li+ ion boosting kinetics were deeply analyzed using simulations and spectroscopic analysis. It is revealed that the hydroxyl-functionalized BN can decrease kinetic energy barriers for Li+ ions and strongly holds TFSI- ions, thereby ensuring faster Li+ ion migration between electrodes and electrolytes. Tailoring the interfacial Li+ ion dynamics with hybrid SEI renders the Li transference number enhancement from 0.391 to 0.562 and 0.178 to 0.327 in liquid and solid-state cells, respectively. Moreover, Li symmetric cells with hybrid SEI exhibit an ultrahigh stability over 3500 h at 2 mA cm-2 with 2 mA h cm-2, along with the improved solid-state LMB performances. Our results suggest increasing Li+ ion transport at the interface is an alternative to resolve Li anode issues.
Collapse
Affiliation(s)
- Donggun Kim
- Institute for Frontier Materials, Deakin University, Geelong, Victoria3216, Australia
| | - Srikanth Mateti
- Institute for Frontier Materials, Deakin University, Geelong, Victoria3216, Australia
| | - Baozhi Yu
- Institute for Frontier Materials, Deakin University, Geelong, Victoria3216, Australia
| | - Khagesh Tanwar
- Institute for Frontier Materials, Deakin University, Geelong, Victoria3216, Australia
| | - Qiran Cai
- Institute for Frontier Materials, Deakin University, Geelong, Victoria3216, Australia
| | - Hongbo Jiang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria3216, Australia
| | - Ye Fan
- Institute for Frontier Materials, Deakin University, Geelong, Victoria3216, Australia
| | - Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Geelong, Victoria3216, Australia
| | - Ying Chen
- Institute for Frontier Materials, Deakin University, Geelong, Victoria3216, Australia
| |
Collapse
|
5
|
FEC Additive for Improved SEI Film and Electrochemical Performance of the Lithium Primary Battery. ENERGIES 2021. [DOI: 10.3390/en14227467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The solid electrolyte interphase (SEI) film plays a significant role in the capacity and storage performance of lithium primary batteries. The electrolyte additives are essential in controlling the morphology, composition and structure of the SEI film. Herein, fluoroethylene carbonate (FEC) is chosen as the additive, its effects on the lithium primary battery performance are investigated, and the relevant formation mechanism of SEI film is analyzed. By comparing the electrochemical performance of the Li/AlF3 primary batteries and the microstructure of the Li anode surface under different conditions, the evolution model of the SEI film is established. The FEC additive can decrease the electrolyte decomposition and protect the lithium metal anode effectively. When an optimal 5% FEC is added, the discharge specific capacity of the Li/AlF3 primary battery is 212.8 mAh g−1, and the discharge specific capacities are respectively 205.7 and 122.3 mAh g−1 after storage for 7 days at room temperature and 55 °C. Compared to primary electrolytes, the charge transfer resistance of the Li/AlF3 batteries with FEC additive decreases, indicating that FEC is a promising electrolyte additive to effectively improve the SEI film, increase discharge-specific capacities and promote charge transfer of the lithium primary batteries.
Collapse
|
6
|
Liu X, Xu P, Zhang J, Hu X, Hou Q, Lin X, Zheng M, Dong Q. A Highly Reversible Lithium Metal Anode by Constructing Lithiophilic Bi-Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102016. [PMID: 34608752 DOI: 10.1002/smll.202102016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/12/2021] [Indexed: 06/13/2023]
Abstract
As a favorable candidate for the next-generation anode materials, metallic lithium is faced with two crucial problems: uncontrollable lithium plating/stripping process and huge volume expansion during cycling. Herein, a 3D lithiophilic skeleton modified with nanoscale Bi sheets (Ni@Bi Foam, i.e., NBF) through one-step facile substitution reaction is constructed. Benefiting from the nanoscale modification, smooth and dense lithiophilic Li3 Bi layer is in situ formed, which improves the uniform deposition of Li subsequently. Meanwhile, the 3D structure inhibits the growth of Li dendrites effectively by reducing local areal current density. Consequently, the NBF exhibits outstanding cycling stability with a high average Coulombic efficiency of 98.46% at 1 mA cm-2 with 1 mAh cm-2 (>500 cycles). Symmetrical cell with NBF exhibits a high reversibility at 1 mA cm-2 with 1 mAh cm-2 (>2000 h). Moreover, superior long-term cycling and rate performance of NBF@Li anode are also acquired when assembled with high areal loading of LiFePO4 (10.1 mg cm-2 ) cathode (Negative/Positive ratio: 2.91). Even in anode-free metal lithium batteries, NBF has higher capacity during cycling compared with NF. To conclude, NBF shows excellent electrochemical performance and provides an idea of facile preparation method which can be extend to other metal batteries.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, China
| | - Pan Xu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, China
| | - Jieling Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, China
| | - Xinyu Hu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, China
| | - Qing Hou
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, China
| | - Xiaodong Lin
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, China
| | - Mingsen Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, China
| | - Quanfeng Dong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
7
|
Li J, Su H, Li M, Xiang J, Wu X, Liu S, Wang X, Xia X, Gu C, Tu J. Fluorinated Interface Layer with Embedded Zinc Nanoparticles for Stable Lithium-Metal Anodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17690-17698. [PMID: 33821613 DOI: 10.1021/acsami.1c02868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lithium-metal batteries are promising candidates for the next-generation energy storage devices. However, notorious dendrite growth and an unstable interface between Li and electrolytes severely hamper the practical implantation of Li-metal anodes. Here, a robust solid electrolyte interphase (SEI) layer with flexible organic components on the top and plentiful LiF together with lithiophilic Zn nanoparticles on the bottom is constructed on Li metal based on the spray quenching method. The fluorinated interface layer exhibits remarkable stability to shield Li from the aggressive electrolyte and restrain dendrite growth. Accordingly, the modified Li electrode delivers a stable cycling for over 400 cycles at 3 mA cm-2 in symmetric cells. An improved capacity retention is also achieved in a full cell with a LiFePO4 cathode. This novel design of the artificial SEI layer offers rational guidance for the further development of high-energy-density lithium-metal batteries.
Collapse
Affiliation(s)
- Jingru Li
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Han Su
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Min Li
- Research Institute of Narada Power Source Co. Ltd, Hangzhou 310012, China
| | - Jiayuan Xiang
- Research Institute of Narada Power Source Co. Ltd, Hangzhou 310012, China
| | - Xianzhang Wu
- Research Institute of Narada Power Source Co. Ltd, Hangzhou 310012, China
| | - Sufu Liu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiuli Wang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinhui Xia
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changdong Gu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiangping Tu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|