1
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Mukherjee MM, Biesbrock D, Abramowitz LK, Pavan M, Kumar B, Walter PJ, Azadi P, Jacobson KA, Hanover JA. Selective bioorthogonal probe for N-glycan hybrid structures. Nat Chem Biol 2024:10.1038/s41589-024-01756-5. [PMID: 39468349 DOI: 10.1038/s41589-024-01756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/17/2024] [Indexed: 10/30/2024]
Abstract
Metabolic incorporation of chemically tagged monosaccharides is a facile means of tagging cellular glycoproteins and glycolipids. However, since the monosaccharide precursors are often shared by several pathways, selectivity has been difficult to attain. For example, N-linked glycosylation is a chemically complex and ubiquitous posttranslational modification, with three distinct classes of GlcNAc-containing N-glycan structures: oligomannose, hybrid and complex. Here we describe the synthesis of 1,3-Pr2-6-OTs GlcNAlk (MM-JH-1) as a next-generation metabolic chemical reporter for the selective labeling of hybrid N-glycan structures. We first developed a general strategy for defining the selectivity of labeling with chemically tagged monosaccharides. We then applied this approach to establish that MM-JH-1 is selectively incorporated into hybrid N-glycans. Using this metabolic chemical reporter as a detection tool, we performed imaging and fractionation to define features of the intracellular localization and trafficking of target proteins bearing hybrid N-glycan structures.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Devin Biesbrock
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Lara K Abramowitz
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Matteo Pavan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, MD, USA
| | - Bhoj Kumar
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Peter J Walter
- Clinical Mass Spectrometry Core, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, MD, USA
| | - John A Hanover
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Mukherjee MM, Bond MR, Abramowitz LK, Biesbrock D, Woodroofe CC, Kim EJ, Swenson RE, Hanover JA. Tools and tactics to define specificity of metabolic chemical reporters. Front Mol Biosci 2023; 10:1286690. [PMID: 38143802 PMCID: PMC10740162 DOI: 10.3389/fmolb.2023.1286690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Metabolic chemical reporters (MCRs) provide easily accessible means to study glycans in their native environments. However, because monosaccharide precursors are shared by many glycosylation pathways, selective incorporation has been difficult to attain. Here, a strategy for defining the selectivity and enzymatic incorporation of an MCR is presented. Performing β-elimination to interrogate O-linked sugars and using commercially available glycosidases and glycosyltransferase inhibitors, we probed the specificity of widely used azide (Ac4GalNAz) and alkyne (Ac4GalNAlk and Ac4GlcNAlk) sugar derivatives. Following the outlined strategy, we provide a semiquantitative assessment of the specific and non-specific incorporation of this bioorthogonal sugar (Ac4GalNAz) into numerous N- and O-linked glycosylation pathways. This approach should be generally applicable to other MCRs to define the extent of incorporation into the various glycan species.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michelle R. Bond
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lara K. Abramowitz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Devin Biesbrock
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Carolyn C. Woodroofe
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Fredrick, MD, United States
| | - Eun Ju Kim
- Department of Chemistry Education, Daegu University, Gyeongsan-si, South Korea
| | - Rolf E. Swenson
- Department of Chemistry Education, Daegu University, Gyeongsan-si, South Korea
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Mukherjee MM, Abramowitz LK, Kumar B, Azadi P, Hanover JA. Selective bioorthogonal probe for N-glycan hybrid structures. RESEARCH SQUARE 2023:rs.3.rs-3093724. [PMID: 37577573 PMCID: PMC10418551 DOI: 10.21203/rs.3.rs-3093724/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metabolic incorporation of chemically tagged monosaccharides is a facile means of labelling cellular glycoprotein and glycolipids. Yet, since the monosaccharide precursors are often shared by several pathways, selectivity has been difficult to attain. For example, N-linked glycosylation is a chemically complex, and ubiquitous post translational modification with three distinct classes of GlcNAc-containing N-glycan structures: oligomannose, hybrid, and complex. Here we describe synthesis of 1,3-Pr2-6-OTs GlcNAlk as a next generation metabolic chemical reporter (MCR) for the specific labeling of hybrid N-glycan structures. We first developed a general strategy for defining the selectivity of labelling with chemically tagged monosaccharides. We then applied this approach to establish that 1,3-Pr2-6-OTs GlcNAlk is specifically incorporated into hybrid N-glycans. Using this MCR as a detection tool, we carried out imaging experiments to define the intracellular localization and trafficking of target proteins bearing hybrid N-glycan structures.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD
| | - Lara K Abramowitz
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD
| | - Bhoj Kumar
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - John A Hanover
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD
| |
Collapse
|
5
|
Kufleitner M, Haiber LM, Wittmann V. Metabolic glycoengineering - exploring glycosylation with bioorthogonal chemistry. Chem Soc Rev 2023; 52:510-535. [PMID: 36537135 DOI: 10.1039/d2cs00764a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glycans are involved in numerous biological recognition events. Being secondary gene products, their labeling by genetic methods - comparable to GFP labeling of proteins - is not possible. To overcome this limitation, metabolic glycoengineering (MGE, also known as metabolic oligosaccharide engineering, MOE) has been developed. In this approach, cells or organisms are treated with synthetic carbohydrate derivatives that are modified with a chemical reporter group. In the cytosol, the compounds are metabolized and incorporated into newly synthesized glycoconjugates. Subsequently, the reporter groups can be further derivatized in a bioorthogonal ligation reaction. In this way, glycans can be visualized or isolated. Furthermore, diverse targeting strategies have been developed to direct drugs, nanoparticles, or whole cells to a desired location. This review summarizes research in the field of MGE carried out in recent years. After an introduction to the bioorthogonal ligation reactions that have been used in in connection with MGE, an overview on carbohydrate derivatives for MGE is given. The last part of the review focuses on the many applications of MGE starting from mammalian cells to experiments with animals and other organisms.
Collapse
Affiliation(s)
- Markus Kufleitner
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Lisa Maria Haiber
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
6
|
Luong P, Ghosh A, Moulton KD, Kulkarni SS, Dube DH. Synthesis and Application of Rare Deoxy Amino l-Sugar Analogues to Probe Glycans in Pathogenic Bacteria. ACS Infect Dis 2022; 8:889-900. [PMID: 35302355 PMCID: PMC9445936 DOI: 10.1021/acsinfecdis.2c00060] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial cell envelope glycans are compelling antibiotic targets as they are critical for strain fitness and pathogenesis yet are virtually absent from human cells. However, systematic study and perturbation of bacterial glycans remains challenging due to their utilization of rare deoxy amino l-sugars, which impede traditional glycan analysis and are not readily available from natural sources. The development of chemical tools to study bacterial glycans is a crucial step toward understanding and altering these biomolecules. Here we report an expedient methodology to access azide-containing analogues of a variety of unusual deoxy amino l-sugars starting from readily available l-rhamnose and l-fucose. Azide-containing l-sugar analogues facilitated metabolic profiling of bacterial glycans in a range of Gram-negative bacteria and revealed differential utilization of l-sugars in symbiotic versus pathogenic bacteria. Further application of these probes will refine our knowledge of the glycan repertoire in diverse bacteria and aid in the design of novel antibiotics.
Collapse
Affiliation(s)
- Phuong Luong
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Antara Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400-076, India
| | - Karen D. Moulton
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400-076, India
| | - Danielle H. Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| |
Collapse
|
7
|
Banahene N, Kavunja HW, Swarts BM. Chemical Reporters for Bacterial Glycans: Development and Applications. Chem Rev 2022; 122:3336-3413. [PMID: 34905344 PMCID: PMC8958928 DOI: 10.1021/acs.chemrev.1c00729] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacteria possess an extraordinary repertoire of cell envelope glycans that have critical physiological functions. Pathogenic bacteria have glycans that are essential for growth and virulence but are absent from humans, making them high-priority targets for antibiotic, vaccine, and diagnostic development. The advent of metabolic labeling with bioorthogonal chemical reporters and small-molecule fluorescent reporters has enabled the investigation and targeting of specific bacterial glycans in their native environments. These tools have opened the door to imaging glycan dynamics, assaying and inhibiting glycan biosynthesis, profiling glycoproteins and glycan-binding proteins, and targeting pathogens with diagnostic and therapeutic payload. These capabilities have been wielded in diverse commensal and pathogenic Gram-positive, Gram-negative, and mycobacterial species─including within live host organisms. Here, we review the development and applications of chemical reporters for bacterial glycans, including peptidoglycan, lipopolysaccharide, glycoproteins, teichoic acids, and capsular polysaccharides, as well as mycobacterial glycans, including trehalose glycolipids and arabinan-containing glycoconjugates. We cover in detail how bacteria-targeting chemical reporters are designed, synthesized, and evaluated, how they operate from a mechanistic standpoint, and how this information informs their judicious and innovative application. We also provide a perspective on the current state and future directions of the field, underscoring the need for interdisciplinary teams to create novel tools and extend existing tools to support fundamental and translational research on bacterial glycans.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | | |
Collapse
|
8
|
Jackson EG, Cutolo G, Yang B, Yarravarapu N, Burns MWN, Bineva-Todd G, Roustan C, Thoden JB, Lin-Jones HM, van Kuppevelt TH, Holden HM, Schumann B, Kohler JJ, Woo CM, Pratt MR. 4-Deoxy-4-fluoro-GalNAz (4FGalNAz) Is a Metabolic Chemical Reporter of O-GlcNAc Modifications, Highlighting the Notable Substrate Flexibility of O-GlcNAc Transferase. ACS Chem Biol 2022; 17:159-170. [PMID: 34931806 PMCID: PMC8787749 DOI: 10.1021/acschembio.1c00818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Bio-orthogonal chemistries
have revolutionized many fields. For
example, metabolic chemical reporters (MCRs) of glycosylation are
analogues of monosaccharides that contain a bio-orthogonal functionality,
such as azides or alkynes. MCRs are metabolically incorporated into
glycoproteins by living systems, and bio-orthogonal reactions can
be subsequently employed to install visualization and enrichment tags.
Unfortunately, most MCRs are not selective for one class of glycosylation
(e.g., N-linked vs O-linked), complicating the types of information
that can be gleaned. We and others have successfully created MCRs
that are selective for intracellular O-GlcNAc modification by altering
the structure of the MCR and thus biasing it to certain metabolic
pathways and/or O-GlcNAc transferase (OGT). Here, we attempt to do
the same for the core GalNAc residue of mucin O-linked glycosylation.
The most widely applied MCR for mucin O-linked glycosylation, GalNAz,
can be enzymatically epimerized at the 4-hydroxyl to give GlcNAz.
This results in a mixture of cell-surface and O-GlcNAc labeling. We
reasoned that replacing the 4-hydroxyl of GalNAz with a fluorine would
lock the stereochemistry of this position in place, causing the MCR
to be more selective. After synthesis, we found that 4FGalNAz labels
a variety of proteins in mammalian cells and does not perturb endogenous
glycosylation pathways unlike 4FGalNAc. However, through subsequent
proteomic and biochemical characterization, we found that 4FGalNAz
does not widely label cell-surface glycoproteins but instead is primarily
a substrate for OGT. Although these results are somewhat unexpected,
they once again highlight the large substrate flexibility of OGT,
with interesting and important implications for intracellular protein
modification by a potential range of abiotic and native monosaccharides.
Collapse
Affiliation(s)
- Emma G. Jackson
- Departments of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Giuliano Cutolo
- Departments of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Bo Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Nageswari Yarravarapu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Mary W. N. Burns
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Ganka Bineva-Todd
- Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Chloë Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - James B. Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Halley M. Lin-Jones
- Departments of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Toin H. van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen The Netherlands
| | - Hazel M. Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Benjamin Schumann
- Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Department of Chemistry, Imperial College London, W120BZ London, United Kingdom
| | - Jennifer J. Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Matthew R. Pratt
- Departments of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
9
|
Ramirez DH, Yang B, D'Souza AK, Shen D, Woo CM. Truncation of the TPR domain of OGT alters substrate and glycosite selection. Anal Bioanal Chem 2021; 413:7385-7399. [PMID: 34725712 DOI: 10.1007/s00216-021-03731-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
Abstract
O-GlcNAc transferase (OGT) is an essential enzyme that installs O-linked N-acetylglucosamine (O-GlcNAc) to thousands of protein substrates. OGT and its isoforms select from these substrates through the tetratricopeptide repeat (TPR) domain, yet the impact of truncations to the TPR domain on substrate and glycosite selection is unresolved. Here, we report the effects of iterative truncations to the TPR domain of OGT on substrate and glycosite selection with the model protein GFP-JunB and the surrounding O-GlcNAc proteome in U2OS cells. Iterative truncation of the TPR domain of OGT maintains glycosyltransferase activity but alters subcellular localization of OGT in cells. The glycoproteome and glycosites modified by four OGT TPR isoforms were examined on the whole proteome and a single target protein, GFP-JunB. We found the greatest changes in O-GlcNAc on proteins associated with mRNA splicing processes and that the first four TPRs of the canonical nucleocytoplasmic OGT had the broadest substrate scope. Subsequent glycosite analysis revealed that alteration to the last four TPRs corresponded to the greatest shift in the resulting O-GlcNAc consensus sequence. This dataset provides a foundation to analyze how perturbations to the TPR domain and expression of OGT isoforms affect the glycosylation of substrates, which will be critical for future efforts in protein engineering of OGT, the biology of OGT isoforms, and diseases associated with the TPR domain of OGT.
Collapse
Affiliation(s)
- Daniel H Ramirez
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Bo Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Alexandria K D'Souza
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Dacheng Shen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
10
|
Gutierrez-Reyes CD, Jiang P, Atashi M, Bennett A, Yu A, Peng W, Zhong J, Mechref Y. Advances in mass spectrometry-based glycoproteomics: An update covering the period 2017-2021. Electrophoresis 2021; 43:370-387. [PMID: 34614238 DOI: 10.1002/elps.202100188] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
Protein glycosylation is one of the most common posttranslational modifications, and plays an essential role in a wide range of biological processes such as immune response, intercellular signaling, inflammation, host-pathogen interaction, and protein stability. Glycoproteomics is a proteomics subfield dedicated to identifying and characterizing the glycans and glycoproteins in a given cell or tissue. Aberrant glycosylation has been associated with various diseases such as Alzheimer's disease, viral infections, inflammation, immune deficiencies, congenital disorders, and cancers. However, glycoproteomic analysis remains challenging because of the low abundance, site-specific heterogeneity, and poor ionization efficiency of glycopeptides during LC-MS analyses. Therefore, the development of sensitive and accurate approaches to efficiently characterize protein glycosylation is crucial. Methods such as metabolic labeling, enrichment, and derivatization of glycopeptides, coupled with different mass spectrometry techniques and bioinformatics tools, have been developed to achieve sophisticated levels of quantitative and qualitative analyses of glycoproteins. This review attempts to update the recent developments in the field of glycoproteomics reported between 2017 and 2021.
Collapse
Affiliation(s)
| | - Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mojgan Atashi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Andrew Bennett
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
11
|
Wang J, Dou B, Zheng L, Cao W, Zeng X, Wen Y, Ma J, Li X. Synthesis of Na 2S 2O 4 mediated cleavable affinity tag for labeling of O-GlcNAc modified proteins via azide-alkyne cycloaddition. Bioorg Med Chem Lett 2021; 48:128244. [PMID: 34229054 DOI: 10.1016/j.bmcl.2021.128244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/22/2023]
Abstract
A facile and convergent procedure for the synthesis of azobenzene-based probe was reported, which could selectively release interested proteins conducted with sodium dithionite. Besides, the cleavage efficiency is closely associated with the structural features, in which an ortho-hydroxyl substituent is necessary for reactivity. In addition, the azobenzene tag applied in the Ac4GlcNAz-labled proteins demonstrated high efficiency and selectivity in comparison with Biotin-PEG4-Alkyne, which provides a useful platform for enrichment of any desired bioorthogonal proteomics.
Collapse
Affiliation(s)
- Jiajia Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Biao Dou
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China
| | - Lu Zheng
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China
| | - Wei Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China
| | - Xueke Zeng
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China
| | - Yinhang Wen
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China
| | - Jing Ma
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, 475004 Kaifeng, China.
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China.
| |
Collapse
|
12
|
Hamala V, Červenková Šťastná L, Kurfiřt M, Cuřínová P, Balouch M, Hrstka R, Voňka P, Karban J. The effect of deoxyfluorination and O-acylation on the cytotoxicity of N-acetyl-D-gluco- and D-galactosamine hemiacetals. Org Biomol Chem 2021; 19:4497-4506. [PMID: 33949602 DOI: 10.1039/d1ob00497b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fully acetylated deoxyfluorinated hexosamine analogues and non-fluorinated 3,4,6-tri-O-acylated N-acetyl-hexosamine hemiacetals have previously been shown to display moderate anti-proliferative activity. We prepared a set of deoxyfluorinated GlcNAc and GalNAc hemiacetals that comprised both features: O-acylation at the non-anomeric positions with an acetyl, propionyl and butanoyl group, and deoxyfluorination at selected positions. Determination of the in vitro cytotoxicity towards the MDA-MB-231 breast cancer and HEK-293 cell lines showed that deoxyfluorination enhanced cytotoxicity in most analogues. Increasing the ester alkyl chain length had a variable effect on the cytotoxicity of fluoro analogues, which contrasted with non-fluorinated hemiacetals where butanoyl derivatives had always higher cytotoxicity than acetates. Reaction with 2-phenylethanethiol indicated that the recently described S-glyco-modification is an unlikely cause of cytotoxicity.
Collapse
Affiliation(s)
- Vojtěch Hamala
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic. and University of Chemistry and Technology Prague, Technická 5, 16628 Praha 6, Czech Republic
| | - Lucie Červenková Šťastná
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic.
| | - Martin Kurfiřt
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic. and University of Chemistry and Technology Prague, Technická 5, 16628 Praha 6, Czech Republic
| | - Petra Cuřínová
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic.
| | - Martin Balouch
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Prague, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, žlutý kopec 7, Brno, 65653, Czech Republic
| | - Petr Voňka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, žlutý kopec 7, Brno, 65653, Czech Republic
| | - Jindřich Karban
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic.
| |
Collapse
|
13
|
Huxley KE, Willems LI. Chemical reporters to study mammalian O-glycosylation. Biochem Soc Trans 2021; 49:903-913. [PMID: 33860782 PMCID: PMC8106504 DOI: 10.1042/bst20200839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Glycans play essential roles in a range of cellular processes and have been shown to contribute to various pathologies. The diversity and dynamic nature of glycan structures and the complexities of glycan biosynthetic pathways make it challenging to study the roles of specific glycans in normal cellular function and disease. Chemical reporters have emerged as powerful tools to characterise glycan structures and monitor dynamic changes in glycan levels in a native context. A variety of tags can be introduced onto specific monosaccharides via the chemical modification of endogenous glycan structures or by metabolic or enzymatic incorporation of unnatural monosaccharides into cellular glycans. These chemical reporter strategies offer unique opportunities to study and manipulate glycan functions in living cells or whole organisms. In this review, we discuss recent advances in metabolic oligosaccharide engineering and chemoenzymatic glycan labelling, focusing on their application to the study of mammalian O-linked glycans. We describe current barriers to achieving glycan labelling specificity and highlight innovations that have started to pave the way to overcome these challenges.
Collapse
Affiliation(s)
- Kathryn E. Huxley
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, U.K
| | - Lianne I. Willems
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, U.K
| |
Collapse
|
14
|
Pedowitz NJ, Pratt MR. Design and Synthesis of Metabolic Chemical Reporters for the Visualization and Identification of Glycoproteins. RSC Chem Biol 2021; 2:306-321. [PMID: 34337414 PMCID: PMC8323544 DOI: 10.1039/d1cb00010a] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glycosylation events play an invaluable role in regulating cellular processes including enzymatic activity, immune recognition, protein stability, and cell-cell interactions. However, researchers have yet to realize the full range of glycan mediated biological functions due to a lack of appropriate chemical tools. Fortunately, the past 25 years has seen the emergence of modified sugar analogs, termed metabolic chemical reporters (MCRs), which are metabolized by endogenous enzymes to label complex glycan structures. Here, we review the major reporters for each class of glycosylation and highlight recent applications that have made a tremendous impact on the field of glycobiology.
Collapse
Affiliation(s)
- Nichole J Pedowitz
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
15
|
Kositzke A, Fan D, Wang A, Li H, Worth M, Jiang J. Elucidating the protein substrate recognition of O-GlcNAc transferase (OGT) toward O-GlcNAcase (OGA) using a GlcNAc electrophilic probe. Int J Biol Macromol 2021; 169:51-59. [PMID: 33333092 PMCID: PMC7856287 DOI: 10.1016/j.ijbiomac.2020.12.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The essential human O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is the sole enzyme responsible for modifying thousands of intracellular proteins with the monosaccharide O-GlcNAc. This unique modification plays crucial roles in human health and disease, but the substrate recognition of OGT remains poorly understood. Intriguingly, the only human enzyme reported to remove this modification, O-GlcNAcase (OGA), is O-GlcNAc modified. Here, we exploited a GlcNAc electrophilic probe (GEP1A) to rapidly screen OGT mutants in a fluorescence assay that can discriminate between altered OGT-sugar and -protein substrate binding to help elucidate the binding mode of OGT toward OGA protein substrate. Since OGT tetratricopeptide repeat (TPR) domain plays a key role in OGT-OGA binding, we screened 30 OGT TPR mutants, which revealed 15 "ladder like" asparagine or aspartate residues spanning TPRs 3-7 and 10-13.5 that affect OGA O-GlcNAcylation. By applying a truncated OGA construct, we found that OGA's N-terminal region or pseudo histone acetyltransferase domain is not required for its O-GlcNAcylation, suggesting OGT functionally interacts with OGA through its catalytic and/or stalk domains. This work represents the first effort to systemically investigate each OGT TPR and our findings will facilitate the development of new strategies to investigate the role of substrate-specific O-GlcNAcylation.
Collapse
Affiliation(s)
- Adam Kositzke
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dacheng Fan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ao Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hao Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Matthew Worth
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
16
|
Towards structure-focused glycoproteomics. Biochem Soc Trans 2021; 49:161-186. [PMID: 33439247 PMCID: PMC7925015 DOI: 10.1042/bst20200222] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Facilitated by advances in the separation sciences, mass spectrometry and informatics, glycoproteomics, the analysis of intact glycopeptides at scale, has recently matured enabling new insights into the complex glycoproteome. While diverse quantitative glycoproteomics strategies capable of mapping monosaccharide compositions of N- and O-linked glycans to discrete sites of proteins within complex biological mixtures with considerable sensitivity, quantitative accuracy and coverage have become available, developments supporting the advancement of structure-focused glycoproteomics, a recognised frontier in the field, have emerged. Technologies capable of providing site-specific information of the glycan fine structures in a glycoproteome-wide context are indeed necessary to address many pending questions in glycobiology. In this review, we firstly survey the latest glycoproteomics studies published in 2018–2020, their approaches and their findings, and then summarise important technological innovations in structure-focused glycoproteomics. Our review illustrates that while the O-glycoproteome remains comparably under-explored despite the emergence of new O-glycan-selective mucinases and other innovative tools aiding O-glycoproteome profiling, quantitative glycoproteomics is increasingly used to profile the N-glycoproteome to tackle diverse biological questions. Excitingly, new strategies compatible with structure-focused glycoproteomics including novel chemoenzymatic labelling, enrichment, separation, and mass spectrometry-based detection methods are rapidly emerging revealing glycan fine structural details including bisecting GlcNAcylation, core and antenna fucosylation, and sialyl-linkage information with protein site resolution. Glycoproteomics has clearly become a mainstay within the glycosciences that continues to reach a broader community. It transpires that structure-focused glycoproteomics holds a considerable potential to aid our understanding of systems glycobiology and unlock secrets of the glycoproteome in the immediate future.
Collapse
|
17
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
18
|
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020; 20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|
19
|
Thomas DR, Scott NE. Glycoproteomics: growing up fast. Curr Opin Struct Biol 2020; 68:18-25. [PMID: 33278752 DOI: 10.1016/j.sbi.2020.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Glycoproteomics is a rapidly growing field which seeks to identify and characterise glycosylation events at a proteome scale. Over the last few years considerable effort has been made in developing new technologies, enrichment systems, and analysis strategies to enhance the quality of glycoproteomic studies. Within this review we discuss the recent developments in glycoproteomics and the current state of the art approaches for analysing glycosylated substrates. We highlight key improvements in mass spectrometry instrumentation coupled with the advancements in enrichment approaches for key classes of glycosylation including mucin-O-glycosylation, O-GlcNAc glycosylation and N-linked glycosylation which now allow the identification/quantification of hundreds to thousands of glycosylation sites within individual experiments. Finally, we summarise the emerging trends within glycoproteomics to illustrate how the field is moving away from studies simply focused on identifying glycosylated substrates to studying specific mechanisms and disease states.
Collapse
Affiliation(s)
- David R Thomas
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne 3000, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne 3000, Australia.
| |
Collapse
|
20
|
Zhu Y, Willems LI, Salas D, Cecioni S, Wu WB, Foster LJ, Vocadlo DJ. Tandem Bioorthogonal Labeling Uncovers Endogenous Cotranslationally O-GlcNAc Modified Nascent Proteins. J Am Chem Soc 2020; 142:15729-15739. [PMID: 32870666 DOI: 10.1021/jacs.0c04121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hundreds of nuclear, cytoplasmic, and mitochondrial proteins within multicellular eukaryotes have hydroxyl groups of specific serine and threonine residues modified by the monosaccharide N-acetylglucosamine (GlcNAc). This modification, known as O-GlcNAc, has emerged as a central regulator of both cell physiology and human health. A key emerging function of O-GlcNAc appears to be to regulate cellular protein homeostasis. We previously showed, using overexpressed model proteins, that O-GlcNAc modification can occur cotranslationally and that this process prevents premature degradation of such nascent polypeptide chains. Here, we use tandem metabolic engineering strategies to label endogenously occurring nascent polypeptide chains within cells using O-propargyl-puromycin (OPP) and target the specific subset of nascent chains that are cotranslationally glycosylated with O-GlcNAc by metabolic saccharide engineering using tetra-O-acetyl-2-N-azidoacetyl-2-deoxy-d-galactopyranose (Ac4GalNAz). Using various combinations of sequential chemoselective ligation strategies, we go on to tag these analytes with a series of labels, allowing us to define conditions that enable their robust labeling. Two-step enrichment of these glycosylated nascent chains, combined with shotgun proteomics, allows us to identify a set of endogenous cotranslationally O-GlcNAc modified proteins. Using alternative targeted methods, we examine three of these identified proteins and further validate their cotranslational O-GlcNAcylation. These findings detail strategies to enable isolation and identification of extremely low abundance endogenous analytes present within complex protein mixtures. Moreover, this work opens the way to studies directed at understanding the roles of O-GlcNAc and other cotranslational protein modifications and should stimulate an improved understanding of the role of O-GlcNAc in cytoplasmic protein quality control and proteostasis.
Collapse
Affiliation(s)
- Yanping Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Lianne I Willems
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Daniela Salas
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia Canada
| | - Samy Cecioni
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Weifeng B Wu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Leonard J Foster
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|