1
|
Souto-Trinei FA, Brea RJ, Devaraj NK. Biomimetic construction of phospholipid membranes by direct aminolysis ligations. Interface Focus 2023; 13:20230019. [PMID: 37577004 PMCID: PMC10415742 DOI: 10.1098/rsfs.2023.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/19/2023] [Indexed: 08/15/2023] Open
Abstract
Construction of artificial cells requires the development of straightforward methods for mimicking natural phospholipid membrane formation. Here we describe the use of direct aminolysis ligations to spontaneously generate biomimetic phospholipid membranes from water-soluble starting materials. Additionally, we explore the suitability of such biomimetic approaches for driving the in situ formation of native phospholipid membranes. Our studies suggest that non-enzymatic ligation reactions could have been important for the synthesis of phospholipid-like membranes during the origin of life, and might be harnessed as simplified methods to enable the generation of lipid compartments in artificial cells.
Collapse
Affiliation(s)
- Federica A. Souto-Trinei
- Biomimetic Membrane Chemistry (BioMemChem) Group, CICA—Centro Interdisciplinar de Química e Bioloxía, Universidade da Coruña, Rúa As Carballeiras, 15701 A Coruña, Spain
| | - Roberto J. Brea
- Biomimetic Membrane Chemistry (BioMemChem) Group, CICA—Centro Interdisciplinar de Química e Bioloxía, Universidade da Coruña, Rúa As Carballeiras, 15701 A Coruña, Spain
| | - Neal K. Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Wu Q, Dong S, Xuan W. N-Glycan Engineering: Constructing the N-GlcNAc Stump. Chembiochem 2023; 24:e202200388. [PMID: 35977913 DOI: 10.1002/cbic.202200388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/17/2022] [Indexed: 01/05/2023]
Abstract
N-Glycosylation is often essential for the structure and function of proteins. However, N-glycosylated proteins from natural sources exhibit considerable heterogeneity in the appended oligosaccharides, bringing daunting challenges to corresponding basic research and therapeutic applications. To address this issue, various synthetic, enzymatic, and chemoenzymatic approaches have been elegantly designed. Utilizing the endoglycosidase-catalyzed transglycosylation method, a single N-acetylglucosamine (N-GlcNAc, analogous to a tree stump) on proteins can be converted to various homogeneous N-glycosylated forms, thereby becoming the focus of research efforts. In this concept article, we briefly introduce the methods that allow the generation of N-GlcNAc and its close analogues on proteins and peptides and highlight the current challenges and opportunities the scientific community is facing.
Collapse
Affiliation(s)
- Qifan Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Weimin Xuan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.,School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
3
|
Taresh AB, Hutton CA. Site Specific Preparation of N-Glycosylated Peptides: Thioamide-Directed Activation of Aspartate. Angew Chem Int Ed Engl 2022; 61:e202210367. [PMID: 36068172 PMCID: PMC9826000 DOI: 10.1002/anie.202210367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 01/11/2023]
Abstract
A site-specific method for the preparation of N-glycosylated peptides is described. Incorporation of a peptide backbone thioamide linkage adjacent to an Asp residue facilitates a AgI -promoted, site-specific conversion to N-glycosylated Asn residues in peptides.
Collapse
Affiliation(s)
- Ameer B. Taresh
- School of Chemistry and Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoria 3010Australia
| | - Craig A. Hutton
- School of Chemistry and Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoria 3010Australia
| |
Collapse
|
4
|
Taresh AB, Hutton CA. Site Specific Preparation of N‐Glycosylated Peptides: Thioamide‐Directed Activation of Aspartate. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ameer B. Taresh
- University of Melbourne School of Chemistry School of Chemistry AUSTRALIA
| | - Craig Anthony Hutton
- University of Melbourne School of Chemistry 30 Flemington Rd. VIC 3095 Parkville AUSTRALIA
| |
Collapse
|
5
|
Borocci S, Grandinetti F, Sanna N. Noble-gas compounds: A general procedure of bonding analysis. J Chem Phys 2022; 156:014104. [PMID: 34998326 DOI: 10.1063/5.0077119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This paper accounts for a general procedure of bonding analysis that is, expectedly, adequate to describe any type of interaction involving the noble-gas (Ng) atoms. Building on our recently proposed classification of the Ng-X bonds (X = binding partner) [New J. Chem. 44, 15536 (2020)], these contacts are first distinguished into three types, namely, A, B, or C, based on the topology of the electron energy density H(r) and on the shape of its plotted form. Bonds of type B or C are, then, further assigned as B-loose (Bl) or B-tight (Bt) and C-loose (Cl) or C-tight (Ct) depending on the sign that H(r) takes along the Ng-X bond path located from the topological analysis of ρ(r), particularly at around the bond critical point (BCP). Any bond of type A, Bl/Bt, or Cl/Ct is, finally, assayed in terms of contribution of covalency. This is accomplished by studying the maximum, minimum, and average value of H(r) over the volume enclosed by the low-density reduced density gradient (RDG) isosurface associated with the bond (typically, the RDG isosurface including the BCP) and the average ρ(r) over the same volume. The bond assignment is also corroborated by calculating the values of quantitative indices specifically defined for the various types of interactions (A, B, or C). The generality of our taken approach should encourage its wide application to the study of Ng compounds.
Collapse
Affiliation(s)
- Stefano Borocci
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100 Viterbo, Italy
| | - Felice Grandinetti
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100 Viterbo, Italy
| | - Nico Sanna
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100 Viterbo, Italy
| |
Collapse
|
6
|
Hessefort H, Gross A, Seeleithner S, Hessefort M, Kirsch T, Perkams L, Bundgaard KO, Gottwald K, Rau D, Graf CGF, Rozanski E, Weidler S, Unverzagt C. Chemical and Enzymatic Synthesis of Sialylated Glycoforms of Human Erythropoietin. Angew Chem Int Ed Engl 2021; 60:25922-25932. [PMID: 34523784 PMCID: PMC9297946 DOI: 10.1002/anie.202110013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/31/2021] [Indexed: 01/15/2023]
Abstract
Recombinant human erythropoietin (EPO) is the main therapeutic glycoprotein for the treatment of anemia in cancer and kidney patients. The in-vivo activity of EPO is carbohydrate-dependent with the number of sialic acid residues regulating its circulatory half-life. EPO carries three N-glycans and thus obtaining pure glycoforms provides a major challenge. We have developed a robust and reproducible chemoenzymatic approach to glycoforms of EPO with and without sialic acids. EPO was assembled by sequential native chemical ligation of two peptide and three glycopeptide segments. The glycopeptides were obtained by pseudoproline-assisted Lansbury aspartylation. Enzymatic introduction of the sialic acids was readily accomplished at the level of the glycopeptide segments but even more efficiently on the refolded glycoprotein. Biological recognition of the synthetic EPOs was shown by formation of 1:1 complexes with recombinant EPO receptor.
Collapse
Affiliation(s)
- Hendrik Hessefort
- University of BayreuthBioorganic ChemistryUniversitätsstraße 3095447BayreuthGermany
| | - Angelina Gross
- University of BayreuthBioorganic ChemistryUniversitätsstraße 3095447BayreuthGermany
| | - Simone Seeleithner
- University of BayreuthBioorganic ChemistryUniversitätsstraße 3095447BayreuthGermany
| | - Markus Hessefort
- University of BayreuthBioorganic ChemistryUniversitätsstraße 3095447BayreuthGermany
| | - Tanja Kirsch
- University of BayreuthBioorganic ChemistryUniversitätsstraße 3095447BayreuthGermany
| | - Lukas Perkams
- University of BayreuthBioorganic ChemistryUniversitätsstraße 3095447BayreuthGermany
| | - Klaus Ole Bundgaard
- University of BayreuthBioorganic ChemistryUniversitätsstraße 3095447BayreuthGermany
| | - Karen Gottwald
- University of BayreuthBioorganic ChemistryUniversitätsstraße 3095447BayreuthGermany
| | - David Rau
- University of BayreuthBioorganic ChemistryUniversitätsstraße 3095447BayreuthGermany
| | | | - Elisabeth Rozanski
- University of BayreuthBioorganic ChemistryUniversitätsstraße 3095447BayreuthGermany
| | - Sascha Weidler
- University of BayreuthBioorganic ChemistryUniversitätsstraße 3095447BayreuthGermany
| | - Carlo Unverzagt
- University of BayreuthBioorganic ChemistryUniversitätsstraße 3095447BayreuthGermany
| |
Collapse
|
7
|
Hessefort H, Gross A, Seeleithner S, Hessefort M, Kirsch T, Perkams L, Bundgaard KO, Gottwald K, Rau D, Graf CGF, Rozanski E, Weidler S, Unverzagt C. Chemical and Enzymatic Synthesis of Sialylated Glycoforms of Human Erythropoietin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hendrik Hessefort
- University of Bayreuth Bioorganic Chemistry Universitätsstraße 30 95447 Bayreuth Germany
| | - Angelina Gross
- University of Bayreuth Bioorganic Chemistry Universitätsstraße 30 95447 Bayreuth Germany
| | - Simone Seeleithner
- University of Bayreuth Bioorganic Chemistry Universitätsstraße 30 95447 Bayreuth Germany
| | - Markus Hessefort
- University of Bayreuth Bioorganic Chemistry Universitätsstraße 30 95447 Bayreuth Germany
| | - Tanja Kirsch
- University of Bayreuth Bioorganic Chemistry Universitätsstraße 30 95447 Bayreuth Germany
| | - Lukas Perkams
- University of Bayreuth Bioorganic Chemistry Universitätsstraße 30 95447 Bayreuth Germany
| | - Klaus Ole Bundgaard
- University of Bayreuth Bioorganic Chemistry Universitätsstraße 30 95447 Bayreuth Germany
| | - Karen Gottwald
- University of Bayreuth Bioorganic Chemistry Universitätsstraße 30 95447 Bayreuth Germany
| | - David Rau
- University of Bayreuth Bioorganic Chemistry Universitätsstraße 30 95447 Bayreuth Germany
| | | | - Elisabeth Rozanski
- University of Bayreuth Bioorganic Chemistry Universitätsstraße 30 95447 Bayreuth Germany
| | - Sascha Weidler
- University of Bayreuth Bioorganic Chemistry Universitätsstraße 30 95447 Bayreuth Germany
| | - Carlo Unverzagt
- University of Bayreuth Bioorganic Chemistry Universitätsstraße 30 95447 Bayreuth Germany
| |
Collapse
|
8
|
Abstract
Selenoesters are compounds of great synthetic relevance since they can be used in several types of chemical transformations and mainly due to their great capacity in the formation of acyl radicals. Therefore, the scientific community has been developing several methods for the synthesis of this class of molecules. This review will address the synthesis of these compounds from different starting materials, such as carboxylic acids derivatives (acid chlorides and anhydrides), aldehydes, selenoacetylenes and miscellaneous methods.
Collapse
Affiliation(s)
- Lucas L Baldassari
- Instituto de Química, Universidade Federal do Rio Grande do Sul-UFRGS, 9500 Bento Gonçalves, Porto Alegre, 91501-970, RS, Brazil
| | - Diogo S Lüdtke
- Instituto de Química, Universidade Federal do Rio Grande do Sul-UFRGS, 9500 Bento Gonçalves, Porto Alegre, 91501-970, RS, Brazil
| |
Collapse
|
9
|
Li Y, Liu J, Zhou Q, Zhao J, Wang P. Preparation of Peptide Selenoesters from Their Corresponding Acyl Hydrazides
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yunxue Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai 200240 China
| | - Jiazhi Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qingqing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai 200240 China
| | - Jie Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai 200240 China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
10
|
Dong S, Zhao Y, Shi Y, Xu Z, Shen J, Jia Q, Li Y, Chen K, Li B, Zhu W. One step stereoselective synthesis of oxazoline-fused saccharides and their conversion into the corresponding 1,2- cis glycosylamines bearing various protected groups. Org Biomol Chem 2021; 19:1580-1588. [PMID: 33522535 DOI: 10.1039/d0ob02477e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we disclosed a straightforward synthesis of oxazoline-fused saccharides (oxazolinoses) from peracetylated saccharides and benzonitriles under acidic conditions with stoichiometric amounts of water. The density functional theory (DFT) calculations have revealed the origin of the stereoselectivity and the key role of water in promoting the departure of the acetyl group at C-2. The resulting oxazolinoses can be concisely converted into the corresponding 1,2-cis glycosylamines bearing various protected groups, allowing the access to schisandrin derivatives.
Collapse
Affiliation(s)
- Sanfeng Dong
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. and CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Yitian Zhao
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. and CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Yulong Shi
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. and School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. and School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Jingshan Shen
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. and School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Qi Jia
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Yiming Li
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Kaixian Chen
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. and CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. and School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Bo Li
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. and School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Weiliang Zhu
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. and CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. and School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
11
|
Zeng C, Sun B, Cao X, Zhu H, Oluwadahunsi OM, Liu D, Zhu H, Zhang J, Zhang Q, Zhang G, Gibbons CA, Liu Y, Zhou J, Wang PG. Chemical Synthesis of Homogeneous Human E-Cadherin N-Linked Glycopeptides: Stereoselective Convergent Glycosylation and Chemoselective Solid-Phase Aspartylation. Org Lett 2020; 22:8349-8353. [PMID: 33045166 DOI: 10.1021/acs.orglett.0c02971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report herein an efficient chemical synthesis of homogeneous human E-cadherin N-linked glycopeptides consisting of a heptapeptide sequence adjacent to the Asn-633 N-glycosylation site with representative N-glycan structures, including a conserved trisaccharide, a core-fucosylated tetrasaccharide, and a complex-type biantennary octasaccharide. The key steps are a chemoselective on-resin aspartylation using a pseudoproline-containing peptide and stereoselective glycosylation using glycosyl fluororide as a donor. This synthetic strategy demonstrates potential utility in accessing a wide range of homogeneous N-linked glycopeptides for the examination of their biological function.
Collapse
Affiliation(s)
- Chen Zeng
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Sun
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuefeng Cao
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hailiang Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | | | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - He Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jiabin Zhang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Qing Zhang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Gaolan Zhang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | | | - Yunpeng Liu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jun Zhou
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States.,R&D Headquarters, WuXi AppTec, Shanghai 200131, China
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|