1
|
Rodger A, Venkatesan K, Aldrich-Wright JR, Brodie C, Garcia-Bennett AE. Integrated Circular Dichroism and Circularly Polarized Luminescence Measurements. Anal Chem 2024; 96:3810-3816. [PMID: 38385756 DOI: 10.1021/acs.analchem.3c04916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Circularly polarized luminescent (CPL) systems have a plethora of potential applications owing to their interesting excited-state properties. However, the progress in developing new chiral luminescence systems is significantly hindered by the lack of available instrumentation for the broader chemistry and materials science community to perform routine, reproducible measurements of chiral spectroscopies. In this work, we present data from an easy-to-use custom-built instrument based on a Jasco circular dichroism (CD) spectropolarimeter coupled with a CPL emission monochromator (CD/CPL hybrid system). The hybrid system measures CPL, fluorescence, CD, and absorbance on the same part of the sample without the need to move between the CD and CPL measurements. The instrument uses a xenon arc lamp as the light source, enabling a wide range of excitation wavelengths to support flexible development of new molecules and materials. Data obtained and presented for camphor, ruthenium metal complexes, the peptide gramicidin, and a DNA-ligand (4',6-diamidino-2-phenylindole, DAPI) system in this work highlight the ease of use and reproducibility of the results. The g-factors for CD and CPL obtained for the different compounds are shown to be the same for isolated transitions and some examples of how to use variations of g-factors with wavelength are demonstrated. The reliable and excellent benchmark results obtained from a custom-built commercial wavelength scanning CPL/CD hybrid instrument open up new avenues for the broader chemical and materials science community to intensify research on chiral luminescent systems.
Collapse
Affiliation(s)
- Alison Rodger
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Research School of Chemistry, Australian National University, ACT 2601, Australia
| | - Koushik Venkatesan
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | - Craig Brodie
- School of Science, Western Sydney University, Sydney, New South Wales 2751, Australia
| | | |
Collapse
|
2
|
Barone V, Carnimeo I, Mancini G, Pagliai M. Development, Validation, and Pilot Application of a Generalized Fluctuating Charge Model for Computational Spectroscopy in Solution. ACS OMEGA 2022; 7:13382-13394. [PMID: 35474835 PMCID: PMC9026056 DOI: 10.1021/acsomega.2c01110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
A general approach enforcing nonperiodic boundary conditions for the computation of spectroscopic properties in solution has been improved including an effective description of charge-transfer contributions and coordination number adjustment for explicit solvent molecules. Both contributions are obtained from a continuous description of intermolecular hydrogen bonds, which has been employed also for an effective clustering of molecular dynamics trajectories. Fine tuning of the model has been performed for several water clusters, and then its efficiency and reliability have been demonstrated by computing the absorption spectra of different creatinine tautomers in aqueous solution.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Ivan Carnimeo
- Scuola
Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| | - Giordano Mancini
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marco Pagliai
- Dipartimento
di Chimica “Ugo Schiff”, Università
degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Fehér PP, Madarász Á, Stirling A. Multiscale Modeling of Electronic Spectra Including Nuclear Quantum Effects. J Chem Theory Comput 2021; 17:6340-6352. [PMID: 34582200 PMCID: PMC8515811 DOI: 10.1021/acs.jctc.1c00531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 11/28/2022]
Abstract
Theoretical prediction of electronic absorption spectra without input from experiments is no easy feat, as it requires addressing all of the factors that affect line shapes. In practice, however, the methodologies are limited to treat these ingredients only to a certain extent. Here, we present a multiscale protocol that addresses the temperature, solvent, and nuclear quantum effects as well as anharmonicity and the reconstruction of the final spectra from individual transitions. First, quantum mechanics/molecular mechanics (QM/MM) molecular dynamics is conducted to obtain trajectories of solute-solvent configurations, from which the corresponding quantum-corrected ensembles are generated through the generalized smoothed trajectory analysis (GSTA). The optical spectra of the ensembles are then produced by calculating vertical transitions using time-dependent density-functional theory (TDDFT) with implicit solvation. To obtain the final spectral shapes, the stick spectra from TDDFT are convoluted with Gaussian kernels where the half-widths are determined by a statistically motivated strategy. We have tested our method by calculating the UV-vis spectra of a recently discovered acridine photocatalyst in two redox states. Vibronic progressions and broadenings due to the finite lifetime of the excited states are not included in the methodology yet. Nuclear quantization affects the relative peak intensities and widths, which is necessary to reproduce the experimental spectrum. We have also found that using only the optimized geometry of each molecule works surprisingly well if a proper empirical broadening factor is applied. This is explained by the rigidity of the conjugated chromophore moieties of the selected molecules, which are mainly responsible for the excitations in the spectra. In contrast, we have also shown that other parts of the molecules are flexible enough to feature anharmonicities that impair the use of other techniques such as Wigner sampling.
Collapse
Affiliation(s)
- Péter P. Fehér
- Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Ádám Madarász
- Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - András Stirling
- Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
- Department
of Chemistry, Eszterházy Károly
University, Leányka
u. 6, 3300 Eger, Hungary
| |
Collapse
|
4
|
Uehara K, Kano H, Matsuo K, Hayashi H, Fujiki M, Yamada H, Aratani N. Mirror‐Image Cofacial Coronene Dimers Characterized by CD and CPL Spectroscopy: A Twisted Bilayer Nanographene. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Keiji Uehara
- Division of Materials Science Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Haruka Kano
- Division of Materials Science Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Kyohei Matsuo
- Division of Materials Science Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Hironobu Hayashi
- Division of Materials Science Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Michiya Fujiki
- Division of R&D True2Materials PTE. Ltd. 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Hiroko Yamada
- Division of Materials Science Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Naoki Aratani
- Division of Materials Science Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma 630-0192 Japan
| |
Collapse
|
5
|
Barone V, Puzzarini C, Mancini G. Integration of theory, simulation, artificial intelligence and virtual reality: a four-pillar approach for reconciling accuracy and interpretability in computational spectroscopy. Phys Chem Chem Phys 2021; 23:17079-17096. [PMID: 34346437 DOI: 10.1039/d1cp02507d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The established pillars of computational spectroscopy are theory and computer based simulations. Recently, artificial intelligence and virtual reality are becoming the third and fourth pillars of an integrated strategy for the investigation of complex phenomena. The main goal of the present contribution is the description of some new perspectives for computational spectroscopy, in the framework of a strategy in which computational methodologies at the state of the art, high-performance computing, artificial intelligence and virtual reality tools are integrated with the aim of improving research throughput and achieving goals otherwise not possible. Some of the key tools (e.g., continuous molecular perception model and virtual multifrequency spectrometer) and theoretical developments (e.g., non-periodic boundaries, joint variational-perturbative models) are shortly sketched and their application illustrated by means of representative case studies taken from recent work by the authors. Some of the results presented are already well beyond the state of the art in the field of computational spectroscopy, thereby also providing a proof of concept for other research fields.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| | | | | |
Collapse
|
6
|
Shedge SV, Zuehlsdorff TJ, Khanna A, Conley S, Isborn CM. Explicit environmental and vibronic effects in simulations of linear and nonlinear optical spectroscopy. J Chem Phys 2021; 154:084116. [PMID: 33639769 DOI: 10.1063/5.0038196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accurately simulating the linear and nonlinear electronic spectra of condensed phase systems and accounting for all physical phenomena contributing to spectral line shapes presents a significant challenge. Vibronic transitions can be captured through a harmonic model generated from the normal modes of a chromophore, but it is challenging to also include the effects of specific chromophore-environment interactions within such a model. We work to overcome this limitation by combining approaches to account for both explicit environment interactions and vibronic couplings for simulating both linear and nonlinear optical spectra. We present and show results for three approaches of varying computational cost for combining ensemble sampling of chromophore-environment configurations with Franck-Condon line shapes for simulating linear spectra. We present two analogous approaches for nonlinear spectra. Simulated absorption spectra and two-dimensional electronic spectra (2DES) are presented for the Nile red chromophore in different solvent environments. Employing an average Franck-Condon or 2DES line shape appears to be a promising method for simulating linear and nonlinear spectroscopy for a chromophore in the condensed phase.
Collapse
Affiliation(s)
- Sapana V Shedge
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Ajay Khanna
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Stacey Conley
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Christine M Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| |
Collapse
|
7
|
Mancini G, Del Galdo S, Chandramouli B, Pagliai M, Barone V. Computational Spectroscopy in Solution by Integration of Variational and Perturbative Approaches on Top of Clusterized Molecular Dynamics. J Chem Theory Comput 2020; 16:5747-5761. [PMID: 32697580 PMCID: PMC8009517 DOI: 10.1021/acs.jctc.0c00454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Multiscale QM/MM approaches have
become the most suitable and effective
methods for the investigation of spectroscopic properties of medium-
or large-size chromophores in condensed phases. On these grounds,
we are developing a novel workflow aimed at improving the generality,
reliability, and ease of use of the available tools. In the present
paper, we report the latest developments of such an approach with
specific reference to a general workplan starting with the addition
of acetonitrile to the panel of solvents already available in the
General Liquid Optimized Boundary (GLOB) model enforcing nonperiodic
boundary conditions (NPBC). Next, the solvatochromic shifts induced
by acetonitrile on both rigid (uracil and thymine) and flexible (thyrosine)
chromophores have been studied introducing in our software a number
of new features ranging from rigid-geometry NPBC molecular dynamics
based on the quaternion formalism to a full integration of variational
(ONIOM) and perturbative (perturbed matrix method (PMM)) approaches
for describing different solute–solvent topologies and local
fluctuations, respectively. Finally, thymine and uracil have been
studied also in methanol to point out the generality of the computational
strategy. While further developments are surely needed, the strengths
of our integrated approach even in its present version are demonstrated
by the accuracy of the results obtained by an unsupervised approach
and coupled to a computational cost strongly reduced with respect
to that of conventional QM/MM models without any appreciable accuracy
deterioration.
Collapse
Affiliation(s)
- Giordano Mancini
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.,Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Sara Del Galdo
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | | | - Marco Pagliai
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.,Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| |
Collapse
|