1
|
Li D, Shen C, Zheng Y, Xu J. Electrochemo-Mechanical Degradation and Failure of Active Particles in High Energy Density Batteries: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407740. [PMID: 39776184 DOI: 10.1002/smll.202407740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Failure of the active particles is inherently electrochemo-mechanics dominated. This review comprehensively examines the electrochemo-mechanical degradation and failure mechanisms of active particles in high-energy density lithium-ion batteries. The study delves into the growth of passivating layers, such as the solid electrolyte interphase (SEI), and their impact on battery performance. It highlights the role of elevated temperatures in accelerating degradation reactions, such as the dissolution of transition metals and the formation of new SEI layers, leading to capacity fade and increased internal resistance. The review also discusses the mechanical degradation of electrode materials, including the fracture of active particles and the impact of stress on electrode performance. Advanced characterization techniques, such as cryogenic scanning transmission electron microscopy and 3D tomography, are explored to provide insights into the structural and chemical evolution of battery materials. By addressing the interplay between chemical, mechanical, and thermal factors, this review aims to provide guidelines for the chemistry development, material selection, structural design as well as recycling of next-generation batteries with high safety, durability, and high energy density.
Collapse
Affiliation(s)
- Dawei Li
- School of Mechanical Engineering, university of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chenhao Shen
- School of Mechanical Engineering, university of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuejiu Zheng
- School of Mechanical Engineering, university of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jun Xu
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
- Energy Mechanics and Sustainability Laboratory (EMSLab), University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
2
|
Zhang P, Huang K, Zhu S, Xiu M, Cao X, Huang C, Huang Y, Chen L. Multifunctional Effect of Carbon Matrix with Sulfur Dopant Inspires Mixed Metal Sulfide as Freestanding Anode in Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405560. [PMID: 39558785 DOI: 10.1002/smll.202405560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/09/2024] [Indexed: 11/20/2024]
Abstract
As active materials for large-radius Na+ storage, metal sulfide (MS) anodes still face several challenges, including poor intrinsic electric conductivity, severe volume change along with the shuttle and dissolution effects of discharge-produced polysulfides. In this work, the mixed nickel-manganese sulfides (NiMnS) in the morphology of uniform 2D ultrathin nanosheets are derived from layered metal-organic frameworks (MOFs), where the NiS-MnS heterojunction are accommodated in carbon matrix with S dopant (NiMnS/SC). Through experiments and density functional theory (DFT) simulations, it is revealed that the carbon matrix with S dopant has multifunctional effects on active NiMnS during the charge/discharge process, including conductive intermediary, electrochemical active site, physical barrier, and chemical adsorption. This work may promote the design of MS-based electrodes in SIBs and extend the application of carbon material with S dopant in Na-S batteries.
Collapse
Affiliation(s)
- Peilin Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kang Huang
- School of Optical and Electronic Information, Suzhou City University, Suzhou, 215104, China
| | - Siyu Zhu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Mingzhen Xiu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xun Cao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chen Huang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Luyang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
Liu J, Liu X, Chen X, Zhou J, Xue J, Zhao H, Wang C, Liu F, Li L. In Situ Forming Asymmetric Gel Polymer Electrolyte Enhances the Performance of High-Voltage Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39356794 DOI: 10.1021/acsami.4c11615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
With the rapid evolution of electric vehicle technology, concerns regarding range anxiety and safety have become increasingly pronounced. Battery systems with high specific energy and enhanced security, featuring ternary cathodes paired with lithium (Li) metal anodes, are poised to emerge as next-generation electrochemical devices. However, the asymmetric configuration of the battery structure, characterized by the robust oxidative behavior of the ternary cathodes juxtaposed with the vigorous reductive activity of the Li metal anodes, imposes elevated requisites for the electrolytes. Herein, a well-designed gel polymer electrolyte with asymmetric structure was successfully prepared based on the Ritter reaction of cyanoethyl poly(vinyl alcohol) (PVA-CN) and cationic ring-opening polymerization of s-Trioxane. With the aid of the sieving effect of separator, the in situ asymmetric gel polymer electrolyte has good compatibility with both the high-voltage cathodes and Li anodes. The amide groups generated by PVA-CN after the Ritter reaction and additional cyano groups can tolerate high voltages up to 5.1 V, matching with ternary cathodes without any challenges. The functional amide and cyano groups participate in the formation of the cathode electrolyte interface and stabilize the cathode structure. Meanwhile, the in situ formed ether-based polyformaldehyde electrolyte is beneficial for promoting uniform Li deposition on anode surfaces. Li-Li symmetric cells demonstrate sustained stability over 2000 h of cycling at a current density of 1 mA cm-2 for 1 mAh cm-2. Furthermore, the capacity retention rate of Li(Ni0.6Mn0.2Co0.2)O2-Li cells with 0.5 C cycling after 300 cycles is 92.2%, demonstrating excellent cycle stability. The electrolyte preparation strategy provides a strategy for the progress of high-performance electrolytes and promotes the rapid development of high-energy-density Li metal batteries.
Collapse
Affiliation(s)
- Jingjing Liu
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Xiao Liu
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Xiaowen Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jianjun Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jinxin Xue
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Huijuan Zhao
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Chen Wang
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Fengquan Liu
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Lin Li
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Li H, Wang L, Song Y, Zhang Z, Du A, Tang Y, Wang J, He X. Why the Synthesis Affects Performance of Layered Transition Metal Oxide Cathode Materials for Li-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312292. [PMID: 38216139 DOI: 10.1002/adma.202312292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Indexed: 01/14/2024]
Abstract
The limited cyclability of high-specific-energy layered transition metal oxide (LiTMO2) cathode materials poses a significant challenge to the industrialization of batteries incorporating these materials. This limitation can be attributed to various factors, with the intrinsic behavior of the crystal structure during the cycle process being a key contributor. These factors include phase transition induced cracks, reduced Li active sites due to Li/Ni mixing, and slower Li+ migration. In addition, the presence of synthesis-induced heterogeneous phases and lattice defects cannot be disregarded as they also contribute to the degradation in performance. Therefore, gaining a profound understanding of the intricate relationship among material synthesis, structure, and performance is imperative for the development of LiTMO2. This paper highlights the pivotal role of structural play in LiTMO2 materials and provides a comprehensive overview of how various control factors influence the specific pathways of structural evolution during the synthesis process. In addition, it summarizes the scientific challenges associated with diverse modification approaches currently employed to address the cyclic failure of materials. The overarching goal is to provide readers with profound insights into the study of LiTMO2.
Collapse
Affiliation(s)
- Hang Li
- School of Automotive Studies, Tongji University, Shanghai, 201804, China
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Li Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Youzhi Song
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Zhiguo Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Aimin Du
- School of Automotive Studies, Tongji University, Shanghai, 201804, China
| | - Yaping Tang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Jianlong Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Li S, Zhu J. Leaching kinetics of fluorine during the aluminum removal from spent Li-ion battery cathode materials. J Environ Sci (China) 2024; 138:312-325. [PMID: 38135398 DOI: 10.1016/j.jes.2023.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 12/24/2023]
Abstract
The high content of aluminum (Al) impurity in the recycled cathode powder seriously affects the extraction efficiency of Nickel, Cobalt, Manganese, and Lithium resources and the actual commercial value of recycled materials, so Al removal is crucially important to conform to the industrial standard of spent Li-ion battery cathode materials. In this work, we systematically investigated the leaching process and optimum conditions associated with Al removal from the cathode powder materials collected in a wet cathode-powder peeling and recycling production line of spent Li-ion batteries (LIBs). Moreover, we specifically studied the leaching of fluorine (F) synergistically happened along with the removal process of Al, which was not concerned about in other studies, but one of the key factors affecting pollution prevention in the recovery process. The mechanism of the whole process including the leaching of Al and F from the cathode powder was indicated by using NMR, FTIR, and XPS, and a defluoridation process was preliminarily investigated in this study. The leaching kinetics of Al could be successfully described by the shrinking core model, controlled by the diffusion process and the activation energy was 11.14 kJ/mol. While, the leaching of F was attributed to the dissolution of LiPF6 and decomposition of PVDF, and the kinetics associated was described by Avrami model. The interaction of Al and F is advantageous to realize the defluoridation to some degree. It is expected that our investigation will provide theoretical support for the large-scale recycling of spent LIBs.
Collapse
Affiliation(s)
- Shengjie Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxin Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Li H, Guo Y, Chen Y, Gao N, Sun R, Lu Y, Chen Q. Outstanding Electrochemical Performance of Ni-Rich Concentration-Gradient Cathode Material LiNi 0.9Co 0.083Mn 0.017O 2 for Lithium-Ion Batteries. Molecules 2023; 28:molecules28083347. [PMID: 37110580 PMCID: PMC10142341 DOI: 10.3390/molecules28083347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The full-concentrationgradient LiNi0.9Co0.083Mn0.017O2 (CG-LNCM), consisting of core Ni-rich LiNi0.93Co0.07O2, transition zone LiNi1-x-yCoxMnyO2, and outmost shell LiNi1/3Co1/3Mn1/3O2 was prepared by a facile co-precipitation method and high-temperature calcination. CG-LNCM was then investigated with an X-ray diffractometer, ascanning electron microscope, a transmission electron microscope, and electrochemical measurements. The results demonstrate that CG-LNCM has a lower cation mixing of Li+ and Ni2+ and larger Li+ diffusion coefficients than concentration-constant LiNi0.9Co0.083Mn0.017O2 (CC-LNCM). CG-LNCM presents a higher capacity and a better rate of capability and cyclability than CC-LNCM. CG-LNCM and CC-LNCM show initial discharge capacities of 221.2 and 212.5 mAh g-1 at 0.2C (40 mA g-1) with corresponding residual discharge capacities of 177.3 and 156.1 mAh g-1 after 80 cycles, respectively. Even at high current rates of 2C and 5C, CG-LNCM exhibits high discharge capacities of 165.1 and 149.1 mAh g-1 after 100 cycles, respectively, while the residual discharge capacities of CC-LNCM are as low as 148.8 and 117.9 mAh g-1 at 2C and 5C after 100 cycles, respectively. The significantly improved electrochemical performance of CG-LNCM is attributed to its concentration-gradient microstructure and the composition distribution of concentration-gradient LiNi0.9Co0.083Mn0.017O2. The special concentration-gradient design and the facile synthesis are favorable for massive manufacturing of high-performance Ni-rich ternary cathode materials for lithium-ion batteries.
Collapse
Affiliation(s)
- Hechen Li
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yiwen Guo
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yuanhua Chen
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
- School of Automobile Engineering, Guilin University of Aerospace Technology, Guilin 541004, China
| | - Nengshuang Gao
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Ruicong Sun
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yachun Lu
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Quanqi Chen
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
- School of Automobile Engineering, Guilin University of Aerospace Technology, Guilin 541004, China
| |
Collapse
|
7
|
Jia K, Wang J, Zhuang Z, Piao Z, Zhang M, Liang Z, Ji G, Ma J, Ji H, Yao W, Zhou G, Cheng HM. Topotactic Transformation of Surface Structure Enabling Direct Regeneration of Spent Lithium-Ion Battery Cathodes. J Am Chem Soc 2023; 145:7288-7300. [PMID: 36876987 DOI: 10.1021/jacs.2c13151] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Recycling spent lithium-ion batteries (LIBs) has become an urgent task to address the issues of resource shortage and potential environmental pollution. However, direct recycling of the spent LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode is challenging because the strong electrostatic repulsion from a transition metal octahedron in the lithium layer provided by the rock salt/spinel phase that is formed on the surface of the cycled cathode severely disrupts Li+ transport, which restrains lithium replenishment during regeneration, resulting in the regenerated cathode with inferior capacity and cycling performance. Here, we propose the topotactic transformation of the stable rock salt/spinel phase into Ni0.5Co0.2Mn0.3(OH)2 and then back to the NCM523 cathode. As a result, a topotactic relithiation reaction with low migration barriers occurs with facile Li+ transport in a channel (from one octahedral site to another, passing through a tetrahedral intermediate) with weakened electrostatic repulsion, which greatly improves lithium replenishment during regeneration. In addition, the proposed method can be extended to repair spent NCM523 black mass, spent LiNi0.6Co0.2Mn0.2O2, and spent LiCoO2 cathodes, whose electrochemical performance after regeneration is comparable to that of the commercial pristine cathodes. This work demonstrates a fast topotactic relithiation process during regeneration by modifying Li+ transport channels, providing a unique perspective on the regeneration of spent LIB cathodes.
Collapse
Affiliation(s)
- Kai Jia
- Tsinghua Shenzhen International Graduate School &Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China.,Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junxiong Wang
- Tsinghua Shenzhen International Graduate School &Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China.,Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhaofeng Zhuang
- Tsinghua Shenzhen International Graduate School &Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
| | - Zhihong Piao
- Tsinghua Shenzhen International Graduate School &Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
| | - Mengtian Zhang
- Tsinghua Shenzhen International Graduate School &Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
| | - Zheng Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanjun Ji
- Tsinghua Shenzhen International Graduate School &Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China.,Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Ma
- Tsinghua Shenzhen International Graduate School &Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
| | - Haocheng Ji
- Tsinghua Shenzhen International Graduate School &Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
| | - Wenjiao Yao
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guangmin Zhou
- Tsinghua Shenzhen International Graduate School &Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
8
|
Li H, Li C, Zhao H, Tao B, Wang G. Two-Dimensional Black Phosphorus: Preparation, Passivation and Lithium-Ion Battery Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185845. [PMID: 36144580 PMCID: PMC9504651 DOI: 10.3390/molecules27185845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022]
Abstract
As a new type of single element direct-bandgap semiconductor, black phosphorus (BP) shows many excellent characteristics due to its unique two-dimensional (2D) structure, which has great potential in the fields of optoelectronics, biology, sensing, information, and so on. In recent years, a series of physical and chemical methods have been developed to modify the surface of 2D BP to inhibit its contact with water and oxygen and improve the stability and physical properties of 2D BP. By doping and coating other materials, the stability of BP applied in the anode of a lithium-ion battery was improved. In this work, the preparation, passivation, and lithium-ion battery applications of two-dimensional black phosphorus are summarized and reviewed. Firstly, a variety of BP preparation methods are summarized. Secondly, starting from the environmental instability of BP, different passivation technologies are compared. Thirdly, the applications of BP in energy storage are introduced, especially the application of BP-based materials in lithium-ion batteries. Finally, based on preparation, surface functionalization, and lithium-ion battery of 2D BP, the current research status and possible future development direction are put forward.
Collapse
Affiliation(s)
- Hongda Li
- Correspondence: (H.L.); (B.T.); (G.W.)
| | | | | | - Boran Tao
- Correspondence: (H.L.); (B.T.); (G.W.)
| | | |
Collapse
|
9
|
Xie Q, Lou F, Luo X, Hao H, Wang M, Wang G, Chen J, Xie Y, Wang G. Enhanced Electrochemical Performance and Safety of LiNi 0.88Co 0.1Al 0.02O 2 by a Negative Thermal Expansion Material of Orthorhombic Al 2(WO 4) 3. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26882-26894. [PMID: 35654441 DOI: 10.1021/acsami.2c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
LiNi0.88Co0.1Al0.02O2 (NCA) is attractive for high-energy batteries, but phase transition and side reactions leave large volume change and thermal runaway. In order to address the drawbacks, orthorhombic Al2(WO4)3, a cheap anisotropic negative thermal expansion material, was synthesized and adopted to modify NCA, and its effects on the electrochemical performance and safety of NCA were investigated using multifarious techniques. Al2(WO4)3 can greatly improve the rate performance, cyclability at different temperatures, thermal stability, and interface behavior and intensify charge transfer as well as decline the deformation and side reactions of NCA. The discharge capacity of the NCA modified with 5 wt % Al2(WO4)3 reaches 170.0 mA h/g at 5.0 C and 25 °C. After 100 cycles, the values of this electrode at 1.0 C and 25 °C and at 3.0 C and 60 °C are 164.2 and 148.7 mA h/g, respectively, much higher than those of the pure NCA under the same conditions. Moreover, Al2(WO4)3 declines the byproducts and cation mixing and decreases the released heat, strain, and charge-transfer resistance after cycles of NCA about 37.1, 33.0, and 32.8%, respectively. The improvement mechanism is discussed. It opens an effective avenue for the applications of energy materials by simultaneously adjusting heat, structure, interface, and deformation.
Collapse
Affiliation(s)
- Qingshan Xie
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Fanghui Lou
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xuejia Luo
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Huming Hao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Mengyao Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Guan Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jianyue Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuting Xie
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Guixin Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Seyed-Talebi SM, Cheraghizade M, Beheshtian J, Kuan CH, Diau EWG. Electrodeposition of Co xNiV yO z Ternary Nanopetals on Bare and rGO-Coated Nickel Foam for High-Performance Supercapacitor Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1894. [PMID: 35683749 PMCID: PMC9182510 DOI: 10.3390/nano12111894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 12/11/2022]
Abstract
We report a simple strategy to grow a novel cobalt nickel vanadium oxide (CoxNiVyOz) nanocomposite on bare and reduced-graphene-oxide (rGO)-coated nickel foam (Ni foam) substrates. In this way, the synthesized graphene oxide is coated on Ni foam, and reduced electrochemically with a negative voltage to prepare a more conductive rGO-coated Ni foam substrate. The fabricated electrodes were characterized with a field-emission scanning electron microscope (FESEM), energy-dispersive X-ray spectra (EDX), X-ray photoelectron spectra (XPS), and Fourier-transform infrared (FTIR) spectra. The electrochemical performance of these CoxNiVyOz-based electrode materials deposited on rGO-coated Ni foam substrate exhibited superior specific capacitance 701.08 F/g, which is more than twice that of a sample coated on bare Ni foam (300.31 F/g) under the same experimental conditions at current density 2 A/g. Our work highlights the effect of covering the Ni foam surface with a rGO film to expedite the specific capacity of the supercapacitors. Despite the slightly decreased stability of a CoxNiVyOz-based electrode coated on a Ni foam@rGO substrate, the facile synthesis, large specific capacitance, and preservation of 92% of the initial capacitance, even after running 5500 cyclic voltammetric (CV) scans, indicate that the CoxNiVyOz-based electrode is a promising candidate for high-performance energy-storage devices.
Collapse
Affiliation(s)
| | - Mohsen Cheraghizade
- Advanced Surface Engineering and Nano Materials Research Center, Department of Electrical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Javad Beheshtian
- Department of Chemistry, Shahid Rajaee Teacher Training University, Tehran, Iran;
| | - Chun-Hsiao Kuan
- Department of Applied Chemistry, National Yang-Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Eric Wei-Guang Diau
- Department of Applied Chemistry, National Yang-Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center of Emergent Functional Matter Science, National Yang-Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
11
|
Zhao K, Gao F, Yang Q. Comprehensive Review on Metallurgical Upgradation Processes of Nickel Sulfide Ores. JOURNAL OF SUSTAINABLE METALLURGY 2022; 8:37-50. [PMID: 37521490 PMCID: PMC8852965 DOI: 10.1007/s40831-022-00501-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/04/2022] [Indexed: 05/12/2023]
Abstract
With the vigorously growing demand of the steel industry, corrosion resistance alloys, clean energy industries, and a variety of engineered infrastructure or technology, high-grade nickel ores are being exhausted gradually in the world. This review outlines metallurgical processes for nickel production from various nickel sulfide ores resources, particularly focusing on recent developments in metallurgical processes to identify potential trends and technical requirements in nickel metallurgy. The main methods have been extensively reviewed for nickel extraction from nickel sulfide ores which maybe are potentially applicable to provide new ideas for smelting technology innovation of nickel and even other similar metals. The main metallurgical methods include pyrometallurgical and hydrometallurgy, containing smelting, leaching, and purification. The advantages and disadvantages of each typical process have been analyzed and compared in this review, and a special emphasis is put forth. Biological metallurgy is highly selective for recovery of nickel and the most promising method recommended for future research and development. Moreover, ion exchange offers useful method for extraction and purification of nickel. In addition, many of the typical new methods involved are also introduced in this article. Graphical Abstract
Collapse
Affiliation(s)
- Kun Zhao
- College of Material Science and Engineering, Yangtze Normal University, Chongqing, China
| | - Feng Gao
- School of Chemistry and Chemistry Engineering, Yangtze Normal University, Chongqing, China
| | - Qunying Yang
- College of Material Science and Engineering, Yangtze Normal University, Chongqing, China
| |
Collapse
|
12
|
Self-sacrificing template method to controllable synthesize hollow SnO2@C nanoboxes for lithium-ion battery anode. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Li L, Chen J, Huang H, Tan L, Song L, Wu HH, Wang C, Zhao Z, Yi H, Duan J, Dong T. Role of Residual Li and Oxygen Vacancies in Ni-rich Cathode Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42554-42563. [PMID: 34464099 DOI: 10.1021/acsami.1c06550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Residual Li and oxygen vacancies in Ni-rich cathode materials have a great influence on electrochemical performance, yet their role is still poorly understood. Herein, by simply adjusting the oxygen flow during the high-temperature sintering process, some Li2O can be carried into the exhaust gas and the contents of residual Li and oxygen vacancies in LiNi0.825Co0.115Mn0.06O2 cathodes can be accurately controlled. Residual Li reduces the surficial Li+ diffusion coefficient, thereby limiting the rate property of the cathode. Oxygen vacancies affect the oxygen release energy in the crystal, and the lowest oxygen release energy is found at an oxygen vacancy concentration of 8.35%, resulting in an unstable structure and thereby poor cycle performance. The Ni-rich cathode with low residual Li and oxygen vacancy contents exhibits superior capacity retention (89.55 and 77.66%) at 2C after 300 cycles between 2.7-4.3 and 2.7-4.5 V. These findings clarify the role of residual Li and oxygen vacancies in Ni-rich cathode materials and provide a simple way to obtain high-performance Ni-rich cathodes for high-energy-density Li-ion batteries.
Collapse
Affiliation(s)
- Lingjun Li
- Changsha University of Science and Technology, Changsha 410004, China
| | - Jiaxin Chen
- Changsha University of Science and Technology, Changsha 410004, China
| | - He Huang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Lei Tan
- Changsha University of Science and Technology, Changsha 410004, China
| | - Liubin Song
- Changsha University of Science and Technology, Changsha 410004, China
| | - Hong-Hui Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chu Wang
- Changsha University of Science and Technology, Changsha 410004, China
| | - Zixiang Zhao
- Changsha University of Science and Technology, Changsha 410004, China
| | - Hongling Yi
- Changsha University of Science and Technology, Changsha 410004, China
| | - Junfei Duan
- Changsha University of Science and Technology, Changsha 410004, China
| | - Ting Dong
- Changsha University of Science and Technology, Changsha 410004, China
| |
Collapse
|
14
|
Yi H, Tan L, Xia L, Li L, Li H, Liu Z, Wang C, Zhao Z, Duan J, Chen Z. Ce-modified LiNi0.5Co0.2Mn0.3O2 cathode with enhanced surface and structural stability for Li ion batteries. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|