1
|
Sustainable organic synthesis promoted on titanium dioxide using coordinated water and renewable energies/resources. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Mehrabi-Kalajahi S, Orooji Y, Arefi-Oskoui S, Varfolomeev MA, Khasanova NM, Yoon Y, Khataee A. Preparasion of layered V4AlC3 MAX phase for highly selective and efficient solvent-free aerobic oxidation of toluene to benzaldehyde. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
3
|
Abay TA, Wanna WH, Natarajan T, Tsai YF, Janmanchi D, Jiang JC, Abu-Reziq R, Yu SSF. Selective oxidation of benzene by an iron oxide carbonaceous nanocatalyst prepared from iron perchlorate salts and hydrogen peroxide in benzene and acetonitrile. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
He Y, Luo Y, Yang M, Zhang Y, Fan M, Li Q. High value utilization of biomass: selective catalytic transformation of lignocellulose into bio-based 2,5-dimethylphenol. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00382a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A new strategy for the synthesis of high-value biochemical 2,5-dimethylphenol was constructed by lignocellulose catalytic pyrolysis and selective hydroxylation.
Collapse
Affiliation(s)
- Yuting He
- Department of Chemical Physics, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Anhui Key Laboratory of Biomass Clean Energy, University of Science & Technology of China, Hefei 230026, China
| | - Yuehui Luo
- Department of Chemical Physics, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Anhui Key Laboratory of Biomass Clean Energy, University of Science & Technology of China, Hefei 230026, China
| | - Mingyu Yang
- Department of Chemical Physics, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Anhui Key Laboratory of Biomass Clean Energy, University of Science & Technology of China, Hefei 230026, China
| | - Yanhua Zhang
- Department of Chemical Physics, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Anhui Key Laboratory of Biomass Clean Energy, University of Science & Technology of China, Hefei 230026, China
| | - Minghui Fan
- Department of Chemical Physics, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Anhui Key Laboratory of Biomass Clean Energy, University of Science & Technology of China, Hefei 230026, China
| | - Quanxin Li
- Department of Chemical Physics, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Anhui Key Laboratory of Biomass Clean Energy, University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Zhu L, Luo Y, He Y, Yang M, Zhang Y, Fan M, Li Q. Selective catalytic synthesis of bio-based high value chemical of benzoic acid from xylan with Co2MnO4@MCM-41 catalyst. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Astakhov GS, Levitsky MM, Zubavichus YV, Khrustalev VN, Titov AA, Dorovatovskii PV, Smol'yakov AF, Shubina ES, Kirillova MV, Kirillov AM, Bilyachenko AN. Cu 6- and Cu 8-Cage Sil- and Germsesquioxanes: Synthetic and Structural Features, Oxidative Rearrangements, and Catalytic Activity. Inorg Chem 2021; 60:8062-8074. [PMID: 33979518 DOI: 10.1021/acs.inorgchem.1c00586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study reports intriguing features in the self-assembly of cage copper(II) silsesquioxanes in the presence of air. Despite the wide variation of solvates used, a series of prismatic hexanuclear Cu6 cages (1-5) were assembled under mild conditions. In turn, syntheses at higher temperatures are accompanied by side reactions, leading to the oxidation of solvates (methanol, 1-butanol, and tetrahydrofuran). The oxidized solvent derivatives then specifically participate in the formation of copper silsesquioxane cages, allowing the isolation of several unusual Cu8-based (6 and 7) and Cu6-based (8) complexes. When 1,4-dioxane was applied as a reaction medium, deep rearrangements occurred (with a total elimination of silsesquioxane ligands), causing the formation of mononuclear copper(II) compounds bearing oxidized dioxane fragments (9 and 11) or a formate-driven 1D coordination polymer (10). Finally, a "directed" self-assembly of sil- and germsesquioxanes from copper acetate (or formate) resulted in the corresponding acetate (or formate) containing Cu6 cages (12 and 13) that were isolated in high yields. The structures of all of the products 1-13 were established by single-crystal X-ray diffraction, mainly based on the use of synchrotron radiation. Moreover, the catalytic activity of compounds 12 and 13 was evaluated toward the mild homogeneous oxidation of C5-C8 cycloalkanes with hydrogen peroxide to form a mixture of the corresponding cyclic alcohols and ketones.
Collapse
Affiliation(s)
- Grigorii S Astakhov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia.,Peoples' Friendship University of Russia, Miklukho-Maklay Street 6, Moscow 117198, Russia
| | - Mikhail M Levitsky
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia
| | - Yan V Zubavichus
- Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences (SB RAS) Prosp. Akad., Lavrentieva 5, Novosibirsk 630090, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia, Miklukho-Maklay Street 6, Moscow 117198, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences (RAS), Leninsky Prospect 47, Moscow 119991, Russia
| | - Aleksei A Titov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl. 1, Moscow 123182, Russia
| | - Alexander F Smol'yakov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia.,Plekhanov Russian University of Economics, Stremyanny per. 36, Moscow 117997, Russia
| | - Elena S Shubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia
| | - Marina V Kirillova
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Alexander M Kirillov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Alexey N Bilyachenko
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia
| |
Collapse
|
7
|
One-Step Catalytic or Photocatalytic Oxidation of Benzene to Phenol: Possible Alternative Routes for Phenol Synthesis? Catalysts 2020. [DOI: 10.3390/catal10121424] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phenol is an important chemical compound since it is a precursor of the industrial production of many materials and useful compounds. Nowadays, phenol is industrially produced from benzene by the multi-step “cumene process”, which is energy consuming due to high temperature and high pressure. Moreover, in the “cumene process”, the highly explosive cumene hydroperoxide is produced as an intermediate. To overcome these disadvantages, it would be useful to develop green alternatives for the synthesis of phenol that are more efficient and environmentally benign. In this regard, great interest is devoted to processes in which the one-step oxidation of benzene to phenol is achieved, thanks to the use of suitable catalysts and oxidant species. This review article discusses the direct oxidation of benzene to phenol in the liquid phase using different catalyst formulations, including homogeneous and heterogeneous catalysts and photocatalysts, and focuses on the reaction mechanisms involved in the selective conversion of benzene to phenol in the liquid phase.
Collapse
|