1
|
Hu D, Wang Y, Liu J, Mao Y, Chang X, Zhu Y. Light-driven sequential shape transformation of block copolymer particles through three-dimensional confined self-assembly. NANOSCALE 2022; 14:6291-6298. [PMID: 35416822 DOI: 10.1039/d2nr01172g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Shape-controlled block copolymer (BCP) particles that respond to light stimulus have drawn great attention due to their promising applications in smart materials, yet polymeric particles with light-triggered controllable sequential shape transformation (SST) are still rarely reported. By confined co-assembly of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) and azo-containing light-responsive additives within emulsions, herein, we fabricated BCP particles with light-controlled SST behavior. Attributed to the quaternization of P2VP chains with bromoalkyl additives and the trans-cis isomerization of an azo group under UV light, the interfacial interactions between the BCPs and the surrounding aqueous phase are significantly varied; therefore, the particles exhibit three distinct phases in sequence: (1) elongation of ellipsoidal particles with increasing domain spacing; (2) shape transformation of elongated ellipsoidal particles into accordion-like particles; and (3) disassembly of polymer particles into small spheres. In addition, these particles with SST behavior can be used in light-controlled drug release at a high spatial-temporal resolution, demonstrating their potential in clinical settings and biomedicine.
Collapse
Affiliation(s)
- Dengwen Hu
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Yaping Wang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Jintao Liu
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Yanya Mao
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Xiaohua Chang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Yutian Zhu
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Nourdine A, Abdelli M, Charvin N, Flandin L. Custom Synthesis of ZnO Nanowires for Efficient Ambient Air-Processed Solar Cells. ACS OMEGA 2021; 6:32365-32378. [PMID: 34901589 PMCID: PMC8655780 DOI: 10.1021/acsomega.1c01654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/27/2021] [Indexed: 06/14/2023]
Abstract
Nanostructuration of solar cells is an interesting approach to improve the photovoltaic conversion efficiency (PCE). This work aims at developing architectured 3D hybrid photovoltaic solar cells using ZnO nanowires (ZnONWs) as the electron transport layer (ETL) and nanocollectors of electrons within the active layer (AL). ZnONWs have been synthesized using a hydrothermal process with a meticulous control of the morphology. The AL of solar cells is elaborated using ZnONWs interpenetrated with a bulk heterojunction composed of donor (π-conjugate low band gap polymer: PBDD4T-2F)/acceptor (fullerene derivate: PC71BM) materials. An ideal interpenetrating ZnONW-D/A system with predefined specific morphological characteristics (length, diameter, and inter-ZnONW distances) was designed and successfully realized. The 3D architectures based on dense ZnONW arrays covered with conformal coatings of AL result in an increased amount of the ETL/AL interface, enhanced light absorption, and improved charge collection efficiency. For AL/ZnONW assembly, spin-coating at 100 °C was found to be the best. Other parameters were also optimized such as the D/A ratio and the pre/post-treatments achieving the optimal device with a D/A ratio of 1.25/1 and methanol treated on ZnONWs before and after the deposition of AL. A PCE of 7.7% (1.4 times better than that of the 2D cells) is achieved. The improvement of the performances with the 3D architecture results from both of: (i) the enhancement of the ZnO/AL surface interface (1 μm2/μm2 for the 2D structure to 6.6 μm2/μm2 for the 3D architecture), (ii) the presence of ZnONWs inside the AL, which behave as numerous nanocollectors (∼60 ZnONW/μm2) of electrons in the depth of the AL. This result validates the efficiency of the concept of nanotexturing of substrates, the method of solar cell assembly based on the nano-textured surface, the chosen morphological characteristics of the nanotexture, and the selected photoactive organic materials.
Collapse
Affiliation(s)
- Ali Nourdine
- Univ. Grenoble Alpes, Univ. Savoie
Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| | - Marwen Abdelli
- Univ. Grenoble Alpes, Univ. Savoie
Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| | - Nicolas Charvin
- Univ. Grenoble Alpes, Univ. Savoie
Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| | - Lionel Flandin
- Univ. Grenoble Alpes, Univ. Savoie
Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| |
Collapse
|