1
|
Ngema LM, Acter S, Adeyemi SA, Marimuthu T, Govender M, Ngwa W, Choonara YE. Mesoporous Polydopamine Nano-Bowls Demonstrate a High Entrapment Efficiency and pH-Responsive Release of Paclitaxel for Suppressing A549 Lung Cancer Cell Proliferation In Vitro. Pharmaceutics 2024; 16:1536. [PMCID: PMC11676260 DOI: 10.3390/pharmaceutics16121536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
Background: The effectiveness of paclitaxel (PTX) in treating non-small-cell lung carcinoma (NSCLC) is restricted by its poor pharmacokinetic profile and side effects. This limitation stems from the lack of a suitable delivery vector to efficiently target cancer cells. Therefore, there is a critical need to develop an efficient carrier for the optimised delivery of PTX in NSCLC therapy. Methods: The present study describes the fabrication of mesoporous polydopamine (mPDA) nano-bowls via an emulsion-induced interfacial anisotropic assembly method, designed for efficient entrapment of PTX and pH-responsive release behaviour. Results: The nano-bowls depicted a typical bowl-like shape, with connecting mesoporous channels and a central hollow cavity, allowing optimal loading of PTX. The fabricated nanocarrier system, mPDA-PTX-nb, had a mean hydrodynamic bowl diameter of 200.4 ± 5.2 nm and a surface charge of −39.2 ± 1.3 mV. The entrapment efficiency of PTX within the nano-bowls was found to be 95.7%, with a corresponding release of 85.1% achieved at the acidic pH 5.9 (simulated tumour microenvironment) at 48 h. Drug release was best fitted to the Peppas–Sahlin model, indicating the involvement of both diffusion and relaxation mechanisms. Treatment with mPDA-PTX-nb significantly suppressed A549 lung cancer cell proliferation at 48 and 72 h, resulting in cell viability of 14.0% and 9.3%, respectively, at the highest concentration (100 µg/mL). Conclusions: These results highlight the potential of mPDA-PTX-nb as an effective nanocarrier for PTX, promoting enhanced anti-proliferative effects in NSCLC therapy.
Collapse
Affiliation(s)
- Lindokuhle M. Ngema
- Wits Advanced Drug Delivery Platform, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (L.M.N.); (S.A.A.); (T.M.); (M.G.)
- Sidney Kimmel Comprehensive Cancer Center, Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Shahinur Acter
- Sidney Kimmel Comprehensive Cancer Center, Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Samson A. Adeyemi
- Wits Advanced Drug Delivery Platform, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (L.M.N.); (S.A.A.); (T.M.); (M.G.)
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (L.M.N.); (S.A.A.); (T.M.); (M.G.)
| | - Mershen Govender
- Wits Advanced Drug Delivery Platform, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (L.M.N.); (S.A.A.); (T.M.); (M.G.)
| | - Wilfred Ngwa
- Sidney Kimmel Comprehensive Cancer Center, Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (L.M.N.); (S.A.A.); (T.M.); (M.G.)
| |
Collapse
|
2
|
Barbalho SM, Torres Pomini K, de Lima EP, da Silva Camarinha Oliveira J, Boaro BL, Cressoni Araújo A, Landgraf Guiguer E, Rici REG, Maria DA, Haber JFDS, Catharin VMCS, Cincotto dos Santos Bueno P, Pereira EDSBM, de Alvares Goulart R, Laurindo LF. Fantastic Frogs and Where to Use Them: Unveiling the Hidden Cinobufagin's Promise in Combating Lung Cancer Development and Progression Through a Systematic Review of Preclinical Evidence. Cancers (Basel) 2024; 16:3758. [PMID: 39594713 PMCID: PMC11592936 DOI: 10.3390/cancers16223758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Cinobufagin (CB), a bufadienolide, has shown promising potential as an anticancer agent, particularly in combating lung cancer. This systematic review synthesizes preclinical evidence on CB's effects against lung cancer, focusing on its mechanisms of action, efficacy, and potential clinical implications. We analyzed data from various preclinical studies involving both in vitro cell line models and in vivo animal models. The reviewed studies indicate that CB effectively reduces cell viability, induces apoptosis, and inhibits cell proliferation, migration, and invasion across multiple lung cancer cell lines and xenograft models. Specifically, CB was found to decrease cell viability and increase apoptosis in lung cancer cells by modulating key molecular pathways, including Bcl-2, Bax, cleaved caspases, caveolin-1, FLOT2, Akt, STAT3, and FOXO1. In vivo studies further demonstrated significant inhibition of tumor growth with minimal toxicity. However, limitations include reliance on in vitro models, which may not fully represent in vivo tumor dynamics, and a lack of long-term safety data. The studies also vary in their methodologies and cell line models, which may not accurately encompass all lung cancer subtypes or predict human responses. Despite these limitations, CB's ability to target specific molecular pathways and its promising results in preclinical models suggest it could be a valuable addition to lung cancer treatment strategies. Our review suggests further clinical trials to validate its efficacy and safety in humans. Future research should explore combination therapies and optimize delivery methods to enhance clinical outcomes.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (S.M.B.); (K.T.P.); (E.P.d.L.); (A.C.A.); (E.L.G.); (P.C.d.S.B.); (R.d.A.G.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (R.E.G.R.); (E.d.S.B.M.P.)
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
- UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Karina Torres Pomini
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (S.M.B.); (K.T.P.); (E.P.d.L.); (A.C.A.); (E.L.G.); (P.C.d.S.B.); (R.d.A.G.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (R.E.G.R.); (E.d.S.B.M.P.)
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (S.M.B.); (K.T.P.); (E.P.d.L.); (A.C.A.); (E.L.G.); (P.C.d.S.B.); (R.d.A.G.)
| | - Jéssica da Silva Camarinha Oliveira
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil (B.L.B.)
| | - Beatriz Leme Boaro
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil (B.L.B.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (S.M.B.); (K.T.P.); (E.P.d.L.); (A.C.A.); (E.L.G.); (P.C.d.S.B.); (R.d.A.G.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (R.E.G.R.); (E.d.S.B.M.P.)
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (S.M.B.); (K.T.P.); (E.P.d.L.); (A.C.A.); (E.L.G.); (P.C.d.S.B.); (R.d.A.G.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (R.E.G.R.); (E.d.S.B.M.P.)
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
| | - Rose Eli Grassi Rici
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (R.E.G.R.); (E.d.S.B.M.P.)
- Graduate Program in Anatomy of Domestic and Wild Animals, College of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-220, SP, Brazil
| | - Durvanei Augusto Maria
- Development and Innovation Laboratory, Butantan Institute, São Paulo 05585-000, SP, Brazil;
| | - Jesselina Francisco dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (S.M.B.); (K.T.P.); (E.P.d.L.); (A.C.A.); (E.L.G.); (P.C.d.S.B.); (R.d.A.G.)
| | - Virgínia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (S.M.B.); (K.T.P.); (E.P.d.L.); (A.C.A.); (E.L.G.); (P.C.d.S.B.); (R.d.A.G.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (R.E.G.R.); (E.d.S.B.M.P.)
| | - Patrícia Cincotto dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (S.M.B.); (K.T.P.); (E.P.d.L.); (A.C.A.); (E.L.G.); (P.C.d.S.B.); (R.d.A.G.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (R.E.G.R.); (E.d.S.B.M.P.)
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (R.E.G.R.); (E.d.S.B.M.P.)
- Department of Odontology, School of Odontology, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (S.M.B.); (K.T.P.); (E.P.d.L.); (A.C.A.); (E.L.G.); (P.C.d.S.B.); (R.d.A.G.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (R.E.G.R.); (E.d.S.B.M.P.)
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (S.M.B.); (K.T.P.); (E.P.d.L.); (A.C.A.); (E.L.G.); (P.C.d.S.B.); (R.d.A.G.)
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil (B.L.B.)
- Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| |
Collapse
|
3
|
Tian H, Zhao F, Yue BS, Zhai BT. Combinational Antitumor Strategies Based on the Active Ingredients of Toad Skin and Toad Venom. Drug Des Devel Ther 2024; 18:3549-3594. [PMID: 39139676 PMCID: PMC11321342 DOI: 10.2147/dddt.s469832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
A multidrug combination strategy is an important mean to improve the treatment of cancer and is the mainstream scheme of clinical cancer treatment. The active ingredients of traditional Chinese medicine, represented by toad skin and toad venom, have the advantages of high efficiency, low toxicity, wide action and multiple targets and have become ideal targets in combined treatment strategies for tumors in recent years. Toad skin and toad venom are traditional Chinese animal medicines derived from Bufo bufo gargarizans Cantor or Bufo melanostictus Schneider that have shown excellent therapeutic effects on the treatment of various cancers and cancer pain as adjuvant antitumor drugs in clinical practice. The involved mechanisms include inducing apoptosis, arresting the cell cycle, inhibiting cell proliferation, migration and invasion, inhibiting tumor angiogenesis, reversing the multidrug resistance of tumor cells, and regulating multiple signaling pathways and targets. Moreover, a multidrug combination strategy based on a nanodelivery system can realize the precise loading of the active ingredients of toad skin or toad venom and other antitumor drugs and carry drugs to overcome physiological and pathological barriers, complete efficient enrichment in tumor tissues, and achieve targeted delivery to tumor cells and the controlled release of drugs, thus enhancing antitumor efficacy and reducing toxicity and side effects. This article reviewed the clinical efficacy and safety of the combination of toad skin and toad venom with chemotherapeutic drugs, targeted drugs, analgesics and other drugs; evaluated the effects and mechanisms of the combination of toad skin and toad venom with chemotherapy, targeted therapy, radiotherapy or hyperthermia, traditional Chinese medicine, signaling pathway inhibitors and other therapies in cell and animal models; and summarized the codelivery strategies for the active ingredients of toad skin and toad venom with chemotherapeutic drugs, small-molecule targeted drugs, monoclonal antibodies, active ingredients of traditional Chinese medicine, and photodynamic and photothermal therapeutic drugs to provide a basis for the rational drug use of toad skin and toad venom in the clinic and the development of novel drug delivery systems.
Collapse
Affiliation(s)
- Huan Tian
- Department of Pharmacy, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, People’s Republic of China
| | - Feng Zhao
- Department of Pharmacy, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, People’s Republic of China
| | - Bao-Sen Yue
- Department of Pharmacy, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, People’s Republic of China
| | - Bing-Tao Zhai
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, People’s Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Xi’an, People’s Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Xi’an, People’s Republic of China
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Xi’an, People’s Republic of China
| |
Collapse
|
4
|
Zhang D, Zhai B, Sun J, Cheng J, Zhang X, Guo D. Advances on Delivery System of Active Ingredients of Dried Toad Skin and Toad Venom. Int J Nanomedicine 2024; 19:7273-7305. [PMID: 39050871 PMCID: PMC11268768 DOI: 10.2147/ijn.s469742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024] Open
Abstract
Dried toad skin (TS) and toad venom (TV) are the dried skin of the Bufo bufo gargarizans Cantor and the Bufo melanostictus Schneider, which remove the internal organs and the white secretions of the skin and retroauricular glands. Since 2005, cinobufacini preparations have been approved by the State Food and Drug Administration for use as adjuvant therapies in the treatment of various advanced cancers. Meanwhile, bufalenolides has been identified as the main component of TS/TV, exhibiting antitumor activity, inducing apoptosis of cancer cells and inhibiting cancer cell proliferation or metastasis through a variety of signaling pathways. However, clinical agents frequently face limitations such as inherent toxicity at high concentrations and insufficient tumor targeting. Additionally, the development and utilization of these active ingredients are hindered by poor water solubility, low bioavailability, and rapid clearance from the bloodstream. To address these challenges, the design of a targeted drug delivery system (TDDS) aims to enhance drug bioavailability, improve targeting within the body, increase drug efficacy, and reduce adverse reactions. This article reviews the TDDS for TS/TV, and their active components, including passive, active, and stimuli-responsive TDDS, to provide a reference for advancing their clinical development and use.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Bingtao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jiangxue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Xiaofei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dongyan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
5
|
Steeves M, Combita D, Whelan W, Ahmed M. Chemotherapeutics-Loaded Poly(Dopamine) Core-Shell Nanoparticles for Breast Cancer Treatment. J Pharmacol Exp Ther 2024; 390:78-87. [PMID: 38296644 DOI: 10.1124/jpet.123.001965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 02/02/2024] Open
Abstract
Chemophotothermal therapy is an emerging treatment of metastatic and drug-resistant cancer anomalies. Among various photothermal agents tested, poly(dopamine) provides an excellent biocompatible alternative that can be used to develop novel drug delivery carriers for cancer treatment. This study explores the synthesis of starch-encapsulated, poly(dopamine)-coated core-shell nanoparticles in a one-pot synthesis approach and by surfactant-free approach. The nanoparticles produced are embellished with polymeric stealth coatings and are tested for their physiologic stability, photothermal properties, and drug delivery in metastatic triple-negative breast cancer cell (TNBC) lines. Our results indicate that stealth polymer-coated nanoparticles exhibit superior colloidal stability under physiologic conditions, and are excellent photothermal agents, as determined by the increase in temperature of solution in the presence of nanoparticles, upon laser irradiation. The chemotherapeutic drug-loaded nanoparticles also showed concentration-dependent toxicities in TNBC and in a brain metastatic cell line. SIGNIFICANCE STATEMENT: This study develops, for the first time, biocompatible core-shell nanoparticles in a template-free approach that can serve as a drug delivery carrier and as photothermal agents for cancer treatment.
Collapse
Affiliation(s)
- Miranda Steeves
- Departments of Chemistry (M.S., D.C., M.A.) and Physics (W.W.) and Faculty of Sustainable Design Engineering (M.A.), University of Prince Edward Island, Charlottetown, Canada
| | - Diego Combita
- Departments of Chemistry (M.S., D.C., M.A.) and Physics (W.W.) and Faculty of Sustainable Design Engineering (M.A.), University of Prince Edward Island, Charlottetown, Canada
| | - William Whelan
- Departments of Chemistry (M.S., D.C., M.A.) and Physics (W.W.) and Faculty of Sustainable Design Engineering (M.A.), University of Prince Edward Island, Charlottetown, Canada
| | - Marya Ahmed
- Departments of Chemistry (M.S., D.C., M.A.) and Physics (W.W.) and Faculty of Sustainable Design Engineering (M.A.), University of Prince Edward Island, Charlottetown, Canada
| |
Collapse
|
6
|
Bi S, Lin H, Zhu K, Zhu Z, Zhang W, Yang X, Chen S, Zhao J, Liu M, Pan P, Liang G. Chitosan-salvianolic acid B coating on the surface of nickel-titanium alloy inhibits proliferation of smooth muscle cells and promote endothelialization. Front Bioeng Biotechnol 2023; 11:1300336. [PMID: 38026871 PMCID: PMC10679528 DOI: 10.3389/fbioe.2023.1300336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Intracranial stents are of paramount importance in managing cerebrovascular disorders. Nevertheless, the currently employed drug-eluting stents, although effective in decreasing in-stent restenosis, might impede the re-endothelialization process within blood vessels, potentially leading to prolonged thrombosis development and restenosis over time. Methods: This study aims to construct a multifunctional bioactive coating to enhance the biocompatibility of the stents. Salvianolic acid B (SALB), a bioactive compound extracted from Salvia miltiorrhiza, exhibits potential for improving cardiovascular health. We utilized dopamine as the base and adhered chitosan-coated SALB microspheres onto nickel-titanium alloy flat plates, resulting in a multifunctional drug coating. Results: By encapsulating SALB within chitosan, the release period of SALB was effectively prolonged, as evidenced by the in vitro drug release curve showing sustained release over 28 days. The interaction between the drug coating and blood was examined through experiments on water contact angle, clotting time, and protein adsorption. Cellular experiments showed that the drug coating stimulates the proliferation, adhesion, and migration of human umbilical vein endothelial cells. Discussion: These findings indicate its potential to promote re-endothelialization. In addition, the bioactive coating effectively suppressed smooth muscle cells proliferation, adhesion, and migration, potentially reducing the occurrence of neointimal hyperplasia and restenosis. These findings emphasize the exceptional biocompatibility of the newly developed bioactive coating and demonstrate its potential clinical application as an innovative strategy to improve stent therapy efficacy. Thus, this coating holds great promise for the treatment of cerebrovascular disease.
Collapse
Affiliation(s)
- Shijun Bi
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Hao Lin
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Kunyuan Zhu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
- Graduate School, China Medical University, Shenyang, China
| | - Zechao Zhu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Wenxu Zhang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Xinyu Yang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Shanshan Chen
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Jing Zhao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Meixia Liu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Pengyu Pan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
7
|
Feng C, Chen B, Fan R, Zou B, Han B, Guo G. Polyphenol-Based Nanosystems for Next-Generation Cancer Therapy: Multifunctionality, Design, and Challenges. Macromol Biosci 2023; 23:e2300167. [PMID: 37266916 DOI: 10.1002/mabi.202300167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Indexed: 06/03/2023]
Abstract
With the continuous updating of cancer treatment methods and the rapid development of precision medicine in recent years, there are higher demands for advanced and versatile drug delivery systems. Scientists are committed to create greener and more effective nanomedicines where the carrier is no longer limited to a single function of drug delivery. Polyphenols, which can act as both active ingredients and fundamental building blocks, are being explored as potential multifunctional carriers that are efficient and safe for design purposes. Due to their intrinsic anticancer activity, phenolic compounds have shown surprising expressiveness in ablation of tumor cells, overcoming cancer multidrug resistance (MDR), and enhancing immunotherapeutic efficacy. This review provides an overview of recent advances in the design, synthesis, and application of versatile polyphenol-based nanosystems for cancer therapy in various modes. Moreover, the merits of polyphenols and the challenges for their clinical translation are also discussed, and it is pointed out that the novel polyphenol delivery system requires further optimization and validation.
Collapse
Affiliation(s)
- Chenqian Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rangrang Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Ashique S, Garg A, Mishra N, Raina N, Ming LC, Tulli HS, Behl T, Rani R, Gupta M. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2769-2792. [PMID: 37219615 DOI: 10.1007/s00210-023-02522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Lung cancer is the most common type of cancer, with over 2.1 million cases diagnosed annually worldwide. It has a high incidence and mortality rate, leading to extensive research into various treatment options, including the use of nanomaterial-based carriers for drug delivery. With regard to cancer treatment, the distinct biological and physico-chemical features of nano-structures have acquired considerable impetus as drug delivery system (DDS) for delivering medication combinations or combining diagnostics and targeted therapy. This review focuses on the use of nanomedicine-based drug delivery systems in the treatment of lung cancer, including the use of lipid, polymer, and carbon-based nanomaterials for traditional therapies such as chemotherapy, radiotherapy, and phototherapy. The review also discusses the potential of stimuli-responsive nanomaterials for drug delivery in lung cancer, and the limitations and opportunities for improving the design of nano-based materials for the treatment of non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, 250103, UP, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology, Jabalpur, M.P, 483001, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, MP, India
| | - Neha Raina
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
- School of Medical and Life Sciences, Sunway University, 47500, Sunway City, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong,, Brunei, Darussalam
| | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, India
| | - Radha Rani
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India.
| |
Collapse
|
9
|
Dai CL, Zhang RJ, An P, Deng YQ, Rahman K, Zhang H. Cinobufagin: a promising therapeutic agent for cancer. J Pharm Pharmacol 2023; 75:1141-1153. [PMID: 37390473 DOI: 10.1093/jpp/rgad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
OBJECTIVES Cinobufagin is a natural active ingredient isolated from the traditional Chinese medicine Venenum Bufonis (Chinese: Chansu), which is the dried secretion of the postauricular gland or skin gland of the Bufo gargarizans Cantor or Bufo melanostictus Schneider. There is increasing evidence indicating that cinobufagin plays an important role in the treatment of cancer. This article is to review and discuss the antitumor pharmacological effects and mechanisms of cinobufagin, along with a description of its toxicity and pharmacokinetics. METHODS The public databases including PubMed, China National Knowledge Infrastructure and Elsevier were referenced, and 'cinobufagin', 'Chansu', 'Venenum Bufonis', 'anticancer', 'cancer', 'carcinoma', and 'apoptosis' were used as keywords to summarize the comprehensive research and applications of cinobufagin published up to date. KEY FINDINGS Cinobufagin can induce tumour cell apoptosis and cycle arrest, inhibit tumour cell proliferation, migration, invasion and autophagy, reduce angiogenesis and reverse tumour cell multidrug resistance, through triggering DNA damage and activating the mitochondrial pathway and the death receptor pathway. CONCLUSIONS Cinobufagin has the potential to be further developed as a new drug against cancer.
Collapse
Affiliation(s)
- Chun-Lan Dai
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Run-Jing Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei An
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Qing Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Hong Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
10
|
Qi Y, Wu H, Zhu T, Liu Z, Liu C, Yan C, Wu Z, Xu Y, Bai Y, Yang L, Cheng D, Zhang X, Zhao H, Zhao C, Dai X. Acetyl-cinobufagin suppresses triple-negative breast cancer progression by inhibiting the STAT3 pathway. Aging (Albany NY) 2023; 15:8258-8274. [PMID: 37651362 PMCID: PMC10497018 DOI: 10.18632/aging.204967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/14/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND The incidence of breast cancer (BC) worldwide has increased substantially in recent years. Epithelial-mesenchymal transition (EMT) refers to a crucial event impacting tumor heterogeneity. Although cinobufagin acts as an effective anticancer agent, the clinical use of cinobufagin is limited due to its strong toxicity. Acetyl-cinobufagin, a pre-drug of cinobufagin, was developed and prepared with greater efficacy and lower toxicity. METHODS A heterograft mouse model using triple negative breast cancer (TNBC) cell lines, was used to evaluate the potency of acetyl-cinobufagin. Signal transducer and stimulator of transcription 3 (STAT3)/EMT involvement was investigated by gene knockout experiments using siRNA and Western blot analysis. RESULTS Acetyl-cinobufagin inhibited proliferation, migration, and cell cycle S/G2 transition and promoted apoptosis in TNBC cells in vitro. In general, IL6 triggered the phosphorylation of the transcription factor STAT3 thereby activating the STAT3 pathway and inducing EMT. Mechanistically, acetyl-cinobufagin suppressed the phosphorylation of the transcription factor STAT3 and blocked the interleukin (IL6)-triggered translocation of STAT3 to the cell nucleus. In addition, acetyl-cinobufagin suppressed EMT in TNBC by inhibiting the STAT3 pathway. Experiments in an animal model of breast cancer clearly showed that acetyl-cinobufagin was able to reduce tumor growth. CONCLUSIONS The findings of this study support the potential clinical use of acetyl-cinobufagin as a STAT3 inhibitor in TNBC adjuvant therapy.
Collapse
Affiliation(s)
- Yufeng Qi
- The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou 311200, Zhejiang, China
| | - Haodong Wu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Tianru Zhu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Zitian Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Conghui Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Congzhi Yan
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Zhixuan Wu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yiying Xu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Ying Bai
- Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Dezhi Cheng
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Xiaohua Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Haiyang Zhao
- Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Chengguang Zhao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xuanxuan Dai
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| |
Collapse
|
11
|
Acter S, Moreau M, Ivkov R, Viswanathan A, Ngwa W. Polydopamine Nanomaterials for Overcoming Current Challenges in Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1656. [PMID: 37242072 PMCID: PMC10223368 DOI: 10.3390/nano13101656] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
In efforts to overcome current challenges in cancer treatment, multifunctional nanoparticles are attracting growing interest, including nanoparticles made with polydopamine (PDA). PDA is a nature-inspired polymer with a dark brown color. It has excellent biocompatibility and is biodegradable, offering a range of extraordinary inherent advantages. These include excellent drug loading capability, photothermal conversion efficiency, and adhesive properties. Though the mechanism of dopamine polymerization remains unclear, PDA has demonstrated exceptional flexibility in engineering desired morphology and size, easy and straightforward functionalization, etc. Moreover, it offers enormous potential for designing multifunctional nanomaterials for innovative approaches in cancer treatment. The aim of this work is to review studies on PDA, where the potential to develop multifunctional nanomaterials with applications in photothermal therapy has been demonstrated. Future prospects of PDA for developing applications in enhancing radiotherapy and/or immunotherapy, including for image-guided drug delivery to boost therapeutic efficacy and minimal side effects, are presented.
Collapse
Affiliation(s)
- Shahinur Acter
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | - Wilfred Ngwa
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
12
|
Ye Q, Zhou X, Han F, Zheng C. Toad venom-derived bufadienolides and their therapeutic application in prostate cancers: Current status and future directions. Front Chem 2023; 11:1137547. [PMID: 37007051 PMCID: PMC10060886 DOI: 10.3389/fchem.2023.1137547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Cancer is the second leading cause of death worldwide. Specially, the high incidence rate and prevalence of drug resistance have rendered prostate cancer (PCa) a great threat to men’s health. Novel modalities with different structures or mechanisms are in urgent need to overcome these two challenges. Traditional Chinese medicine toad venom-derived agents (TVAs) have shown to possess versatile bioactivities in treating certain diseases including PCa. In this work, we attempted to have an overview of bufadienolides, the major bioactive components in TVAs, in the treatment of PCa in the past decade, including their derivatives developed by medicinal chemists to antagonize certain drawbacks of bufadienolides such as innate toxic effect to normal cells. Generally, bufadienolides can effectively induce apoptosis and suppress PCa cells in-vitro and in-vivo, majorly mediated by regulating certain microRNAs/long non-coding RNAs, or by modulating key pro-survival and pro-metastasis players in PCa. Importantly, critical obstacles and challenges using TVAs will be discussed and possible solutions and future perspectives will also be presented in this review. Further in-depth studies are clearly needed to decipher the mechanisms, e.g., targets and pathways, toxic effects and fully reveal their application. The information collected in this work may help evoke more effects in developing bufadienolides as therapeutic agents in PCa.
Collapse
Affiliation(s)
- Qingmei Ye
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xin Zhou
- The Fifth People’s Hospital of Hainan Province & Affiliated Dermatology Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Fangxuan Han
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
- *Correspondence: Caijuan Zheng,
| |
Collapse
|
13
|
Recent Advances in Bio-Inspired Versatile Polydopamine Platforms for “Smart” Cancer Photothermal Therapy. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
14
|
Ezhilarasan D, Lakshmi T, Mallineni SK. Nano-based targeted drug delivery for lung cancer: therapeutic avenues and challenges. Nanomedicine (Lond) 2022; 17:1855-1869. [PMID: 35311343 DOI: 10.2217/nnm-2021-0364] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Most anticancer drugs often fail in clinical trials due to poor solubility, poor bioavailability, lack of targeted delivery and several off-target effects. Polymeric nanoparticles such as poly(lactide), poly(lactic-co-glycolic acid), ALB-loading paclitaxel (Abraxane® ABI-007), lomustine-loaded chitosan, gelatin (decorated with EGF receptor-targeted biotinylated EGF) and so on offer controlled and sustained drug-release properties, biocompatibility and promising anticancer effects. EGF, folic acid, transferrin, sigma and urokinase plasminogen activator receptors-targeting nano preparations improve bioavailability and accumulate drugs on the lung tumor cell surface. However, route of administration, size, pharmacokinetic properties, immune clearance and so on hamper nanomedicines' clinical uses. This review focuses on the benefits, avenues and challenges of nanoparticle-based drug-delivery systems for lung cancer treatment.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Gold Lab, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600077, India
| | - Thangavelu Lakshmi
- Department of Pharmacology, Gold Lab, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600077, India
| | - Sreekanth Kumar Mallineni
- Department of Preventive Dental Sciences, College of Dentistry, Majmaah University, Almajmaah, 11952, Saudi Arabia
| |
Collapse
|
15
|
Fan H, Yan T, Chen S, Du Z, Alimu G, Zhu L, Ma R, Tang X, Heng Y, Alifu N, Zhang X. Polydopamine encapsulated new indocyanine green theranostic nanoparticles for enhanced photothermal therapy in cervical cancer HeLa cells. Front Bioeng Biotechnol 2022; 10:984166. [PMID: 36213060 PMCID: PMC9534555 DOI: 10.3389/fbioe.2022.984166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Photothermal therapy (PTT) has attracted extensive attention in cancer treatment due to its non-invasiveness, high efficiency, and repeatability in recent years. Photothermal agents (PTAs) are the key factor for PTT. Recently, although an increasing number of PTAs have been developed, there is still a great demand for optimized photothermal nanoparticles (NPs) with low toxicity, bio-safety and stability. Herein, new indocyanine green (IR820) with near-infrared (NIR:700–1,700 nm) fluorescence emission was selected as a photothermal agent (PTA). To enhance the PTT property, IR820 was encapsulated with another kind of PTA, polydopamine (PDA) under alkaline conditions. Furthermore, to improve the biocompatibility of the NPs, methoxy polyethylene glycol amine (mPEG-NH2) was modified via a Michael addition to form a novel kind of IR820@PDA@PEG NPs. After detailed characterization and analysis, the obtained IR820@PDA@PEG NPs showed a spherical shape with an average diameter of ∼159.6 nm. Meanwhile, the formed IR820@PDA@PEG NPs exhibited better photostability and lower cytotoxicity than free IR820 molecules. The photothermal performance of IR820@PDA@PEG NPs was further analyzed in vitro, and the temperature of IR820@PDA@PEG NPs (100 μg/ml) reached 54.8°C under 793 nm laser irradiation. Afterwards, the cellular uptake of IR820@PDA@PEG NPs was evaluated via confocal laser scanning fluorescence microscopic imaging. Then, PTT experiments on HeLa cells demonstrated that IR820@PDA@PEG NPs can hyperthermal ablate cancer cells (∼49.1%) under 793 nm laser irradiation. Therefore, IR820@PDA@PEG NPs would be a promising PTA for the treatment of cervical cancer HeLa cells.
Collapse
Affiliation(s)
- Huimin Fan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| | - Ting Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Shuang Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhong Du
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Gulinigaer Alimu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Lijun Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Rong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaohui Tang
- Central Laboratory of Xinjiang Medical University, Urumqi, China
| | - Youqiang Heng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
- *Correspondence: Nuernisha Alifu, ; Xueliang Zhang,
| | - Xueliang Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
- *Correspondence: Nuernisha Alifu, ; Xueliang Zhang,
| |
Collapse
|
16
|
Wei B, Ma Y. Synergistic effect of GF9 and streptomycin on relieving gram-negative bacteria-induced sepsis. Front Bioeng Biotechnol 2022; 10:973588. [PMID: 36110326 PMCID: PMC9468263 DOI: 10.3389/fbioe.2022.973588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) regulates inflammation and promotes a vigorous immune response. GF9 is one of the peptides that inhibit the mTREM-1 signaling pathway, thus reducing the inflammatory mediators in diseases including sepsis. Nanotechnology could offer a new complementary strategy for diseases. Streptomycin is also one treatment of sepsis. However, the role of nanoparticles delivered GF9 combined with streptomycin on sepsis had never been discovered. In the present study, cecal ligation and puncture (CLP) and lipopolysaccharide [LPS, Escherichia coli (E. coli) O111:B4] sepsis models were constructed. SDS-PAGE was used to evaluate the size of nano drugs; Western blot was used to detect the protein levels of MMP2 and TREM-1 in cells. The levels of TNF-α and IL-6 were detected by ELISA. Histopathological changes were observed by HE staining. And the nanomedicines of GF9-HFn/Str were successfully constructed. The size of GF9-HFn/Str is 36 kD. The ferritin-based nanoparticle plays a vital role in delivering streptomycin into cells and tissues. GF9 (1.6 μM) and streptomycin (40 μM) co-delivery nanomedicine showed a better effect on promoting overall survival, decreasing E. coli, significantly suppressed the expression levels of inflammatory factors (TNF-α and IL-6), and can reduce lung injury. Our study demonstrated that combination delivery of nanomedicine GF9 and streptomycin have a better effect on overall survival rate, anti-inflammatory, and anti-bacterial in sepsis. Our present study revealed a new potential therapeutic method for sepsis.
Collapse
Affiliation(s)
- Bing Wei
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, and Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Clinical Center for Medicine in Acute Infection, Capital Medical University, Beijing, China
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yingmin Ma,
| |
Collapse
|
17
|
Liu WB, Dong SH, Hu WH, Gao M, Li T, Ji QB, Yang XQ, Qi DB, Zhang Z, Song ZL, Liu YJ, Zhang XS. A simple, universal and multifunctional template agent for personalized treatment of bone tumors. Bioact Mater 2022; 12:292-302. [PMID: 35087969 PMCID: PMC8783040 DOI: 10.1016/j.bioactmat.2021.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022] Open
Abstract
Bone tumors occur in bone or its accessory tissues. Benign bone tumors are easy to cure and have good prognosis, while malignant bone tumors develop rapidly and have poor and high mortality. So far, there is no satisfactory treatment method. Here, we designed a universal template vector for bone tumor therapy that simultaneously meets the needs of bone targeting, tumor killing, osteoclast suppression, and tumor imaging. The template is composed of a polydopamine (PDA) core and a multifunctional surface. PDA has excellent biosafety and photothermal performance. In this study, alendronate sodium (ALN) is grafted to enable its general bone targeting function. PDA core can carry a variety of chemotherapy drugs, and the rich ALN group can carry a variety of metal ions with an imaging function. Therefore, more personalized treatment plans can be designed for different bone tumor patients. In addition, the PDA core enables photothermal therapy and enhanced chemotherapy. Through template drug Doxorubicin (DOX) and template imaging ion Fe (Ⅱ), we systematically verified the therapeutic effect, imaging effect, and inhibition of bone dissolution of the agent on Osteosarcoma (OS), a primary malignant bone tumor, in vivo. In conclusion, our work provides a more general template carrier for the clinical treatment of bone tumors, through which personalized treatment of bone tumors can be achieved. The PDA-ALN-DOX presented high bone targeting property, photothermal conversion efficiency, drug loading capacity, and multimodal imaging modalities. CPT is a more efficient and convenient therapy for bone tumors.
Collapse
|
18
|
Lin X, Wu J, Liu Y, Lin N, Hu J, Zhang B. Stimuli-Responsive Drug Delivery Systems for the Diagnosis and Therapy of Lung Cancer. Molecules 2022; 27:molecules27030948. [PMID: 35164213 PMCID: PMC8838081 DOI: 10.3390/molecules27030948] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer death worldwide. Numerous drugs have been developed to treat lung cancer patients in recent years, whereas most of these drugs have undesirable adverse effects due to nonspecific distribution in the body. To address this problem, stimuli-responsive drug delivery systems are imparted with unique characteristics and specifically deliver loaded drugs at lung cancer tissues on the basis of internal tumor microenvironment or external stimuli. This review summarized recent studies focusing on the smart carriers that could respond to light, ultrasound, pH, or enzyme, and provided a promising strategy for lung cancer therapy.
Collapse
Affiliation(s)
- Xu Lin
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Jiahe Wu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.W.); (Y.L.); (N.L.)
| | - Yupeng Liu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.W.); (Y.L.); (N.L.)
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.W.); (Y.L.); (N.L.)
- Cancer Center, Zhejiang University, Hangzhou 310003, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Correspondence: (J.H.); (B.Z.)
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.W.); (Y.L.); (N.L.)
- Cancer Center, Zhejiang University, Hangzhou 310003, China
- Correspondence: (J.H.); (B.Z.)
| |
Collapse
|
19
|
Shao H, Li B, Li H, Gao L, Zhang C, Sheng H, Zhu L. Novel Strategies for Solubility and Bioavailability Enhancement of Bufadienolides. Molecules 2021; 27:51. [PMID: 35011278 PMCID: PMC8746454 DOI: 10.3390/molecules27010051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Toad venom contains a large number of bufadienolides, which have a variety of pharmacological activities, including antitumor, cardiovascular, anti-inflammatory, analgesic and immunomodulatory effects. The strong antitumor effect of bufadienolides has attracted considerable attention in recent years, but the clinical application of bufadienolides is limited due to their low solubility and poor bioavailability. In order to overcome these shortcomings, many strategies have been explored, such as structural modification, solid dispersion, cyclodextrin inclusion, microemulsion and nanodrug delivery systems, etc. In this review, we have tried to summarize the pharmacological activities and structure-activity relationship of bufadienolides. Furthermore, the strategies for solubility and bioavailability enhancement of bufadienolides also are discussed. This review can provide a basis for further study on bufadienolides.
Collapse
Affiliation(s)
| | | | | | | | | | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China; (H.S.); (B.L.); (H.L.); (L.G.); (C.Z.)
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China; (H.S.); (B.L.); (H.L.); (L.G.); (C.Z.)
| |
Collapse
|
20
|
Zhang Z, Zhang J, Tian J, Li H. A polydopamine nanomedicine used in photothermal therapy for liver cancer knocks down the anti-cancer target NEDD8-E3 ligase ROC1 (RBX1). J Nanobiotechnology 2021; 19:323. [PMID: 34654435 PMCID: PMC8518243 DOI: 10.1186/s12951-021-01063-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Knocking down the oncogene ROC1 with siRNA inhibits the proliferation of cancer cells by suppressing the Neddylation pathway. However, methods for delivering siRNA in vivo to induce this high anticancer activity with low potential side effects are urgently needed. Herein, a folic acid (FA)-modified polydopamine (PDA) nanomedicine used in photothermal therapy was designed for siRNA delivery. The designed nanovector can undergo photothermal conversion with good biocompatibility. Importantly, this genetic nanomedicine was selectively delivered to liver cancer cells by FA through receptor-mediated endocytosis. Subsequently, the siRNA cargo was released from the PDA nanomedicine into the tumor microenvironment by controlled release triggered by pH. More importantly, the genetic nanomedicine not only inhibited liver cancer cell proliferation but also promoted liver cell apoptosis by slowing ROC1 activity, suppressing the Neddylation pathway, enabling the accumulation of apototic factor ATF4 and DNA damage factor P-H2AX. Combined with photothermal therapy, this genetic nanomedicine showed superior inhibition of the growth of liver cancer in vitro and in vivo. Taken together, the results indicate that this biodegradable nanomedicine exhibits good target recognition, an effective pH response, application potential for genetic therapy, photothermal imaging and treatment of liver cancer. Therefore, this work contributes to the design of a multifunctional nanoplatform that combines genetic therapy and photothermal therapy for the treatment of liver cancer. ![]()
Collapse
Affiliation(s)
- Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China.
| | - Junqian Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China
| | - Jianhui Tian
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China
| | - Hegen Li
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China
| |
Collapse
|
21
|
Wu M, He S, Hu X, Chen J, Ha E, Ai F, Ji T, Hu J, Ruan S. A Near-Infrared Light Triggered Composite Nanoplatform for Synergetic Therapy and Multimodal Tumor Imaging. Front Chem 2021; 9:695511. [PMID: 34368079 PMCID: PMC8339317 DOI: 10.3389/fchem.2021.695511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Transition-metal chalcogenide compounds with facile preparation and multifunctional elements act as ideal photothermal agents for cancer theranostics. This work synthesizes Cu7.2S4/5MoS2 composite nanoflowers and investigates the crystal growth mechanism to optimize the synthesis strategy and obtain excellent photothermal therapy agents. Cu7.2S4/5MoS2 exhibits a high photothermal conversion efficiency of 58.7% and acts as a theranostic nanoplatform and demonstrated an effective photothermal–chemodynamic–photodynamic synergetic therapeutic effect in both in vitro and in vivo tests. Moreover, Cu7.2S4/5MoS2 shows strong photoacoustic signal amplitudes and computed tomographic contrast enhancement in vivo. These results suggest a potential application of Cu7.2S4/5MoS2 composite nanoflowers as photo/H2O2-responsive therapeutic agents against tumors.
Collapse
Affiliation(s)
- Mingzhou Wu
- Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.,College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Shuqing He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Xin Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Jingqin Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Enna Ha
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Fujin Ai
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Tao Ji
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Shuangchen Ruan
- Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.,Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|