1
|
Morales-Guevara R, Fuentes JA, Páez-Hernández D, Carreño A. Intramolecular Hydrogen Bond in Pyridine Schiff Bases as Ancillary Ligands of Re(I) Complexes Is a Switcher between Visible and NIR Emissions: A Relativistic Quantum Chemistry Study. J Phys Chem A 2022; 126:8997-9007. [PMID: 36413983 DOI: 10.1021/acs.jpca.2c06435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rhenium(I) tricarbonyl complexes have been described as suitable fluorophores, particularly for biological applications. fac-[Re(CO)3(N,N)L](0 or 1+) complexes, where N,N is a substituted dinitrogenated ligand (bipyridine or derivatives with relatively small substituents) and L the ancillary ligand [a pyridine Schiff base (PSB) harboring an intramolecular hydrogen bond (IHB)], have presented promissory results concerning their use as fluorophores, especially for walled cells (i.e., bacteria and fungi). In this work, we present a relativistic theoretical analysis of two series of fac-[Re(CO)3(N,N)PSB]1+ complexes to predict the role of the IHB in the ancillary ligand concerning their photophysical behavior. N,N corresponds to 2,2'-bipyridine (bpy) (series A) or 4,4'-bis(ethoxycarbonyl)-2,2'-bipyridine (deeb) (series B). We found that all the complexes present absorption in the visible light range. In addition, complexes presenting a PSB with an IHB exhibit luminescent emission suitable for biological purposes: large Stokes shift, emission in the range of 600-700 nm, and τ in the order of 10-2 to 10-3 s. By contrast, complexes with PSB lacking the IHB show a predicted emission with the lowest triplet excited-state energy entering the NIR region. These results suggest a role of the IHB as an important switcher between visible and NIR emissions in this kind of complexes. Since the PSB can be substituted to modulate the properties of the whole Re(I) complex, it will be interesting to explore whether other substitutions can also affect the photophysical properties, mainly the emission range.
Collapse
Affiliation(s)
- Rosaly Morales-Guevara
- Programa de Doctorado en Físicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile.,Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andrés Bello, República 330, Santiago 8370186, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile
| | - Dayán Páez-Hernández
- Programa de Doctorado en Físicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile.,Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andrés Bello, República 330, Santiago 8370186, Chile
| | - Alexander Carreño
- Programa de Doctorado en Físicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile.,Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andrés Bello, República 330, Santiago 8370186, Chile
| |
Collapse
|
2
|
Brink A, Jacobs FJF, Helliwell JR. Trends in coordination of rhenium organometallic complexes in the Protein Data Bank. IUCRJ 2022; 9:180-193. [PMID: 35371500 PMCID: PMC8895017 DOI: 10.1107/s2052252522000665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Radiopharmaceutical development has similar overall characteristics to any biomedical drug development requiring a compound's stability, aqueous solubility and selectivity to a specific disease site. However, organometallic complexes containing 188/186Re or 99mTc involve a d-block transition-metal radioactive isotope and therefore bring additional factors such as metal oxidation states, isotope purity and half life into play. This topical review is focused on the development of radiopharmaceuticals containing the radioisotopes of rhenium and technetium and, therefore, on the occurrence of these organometallic complexes in protein structures in the Worldwide Protein Data Bank (wwPDB). The purpose of incorporating the group 7 transition metals of rhenium/technetium in the protein and the reasons for study by protein crystallography are described, as certain PDB studies were not aimed at drug development. Technetium is used as a medical diagnostic agent and involves the 99mTc isotope which decays to release gamma radiation, thereby employed for its use in gamma imaging. Due to the periodic relationship among group 7 transition metals, the coordination chemistry of rhenium is similar (but not identical) to that of technetium. The types of reactions the potential model radiopharmaceutical would prefer to partake in, and by extension knowing which proteins and biomolecules the compound would react with in vivo, are needed. Crystallography studies, both small molecule and macromolecular, are a key aspect in understanding chemical coordination. Analyses of bonding modes, coordination to particular residues and crystallization conditions are presented. In our Forward look as a concluding summary of this topical review, the question we ask is: what is the best way for this field to progress?
Collapse
Affiliation(s)
- Alice Brink
- Chemistry Department, University of the Free State, Nelson Mandela Drive, Bloemfontein, South Africa
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, United Kingdom
| | - Francois J. F. Jacobs
- Chemistry Department, University of the Free State, Nelson Mandela Drive, Bloemfontein, South Africa
| | - John R. Helliwell
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, United Kingdom
| |
Collapse
|
3
|
Morales-Guevara R, Fuentes JA, Paez-Hernández D, Carreño A. The role of substituted pyridine Schiff bases as ancillary ligands in the optical properties of a new series of fac-rhenium(i) tricarbonyl complexes: a theoretical view. RSC Adv 2021; 11:37181-37193. [PMID: 35496390 PMCID: PMC9043815 DOI: 10.1039/d1ra05737e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/01/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Over the last few years, luminescent Re(i) tricarbonyl complexes have been increasingly proposed as fluorophores suitable for fluorescence microscopy to visualize biological structures and cells. In this sense, incorporating an asymmetrical pyridine Schiff base (PSB) as the ancillary ligand strongly modifies the staining and luminescent properties of Re(i) tricarbonyl complexes. In this work, we analyzed two series of Re(i) tricarbonyl complexes with their respective PSB ligands: (1) fac-[Re(CO)3(2,2'-bpy)(PSB)]1+ and (2) fac-[Re(CO)3(4,4'-bis(ethoxycarbonyl)-2,2'-bpy)(PSB)]1+, where the PSB exhibits substitutions at positions 4 or 6 in the phenolic ring with methyl or halogen substituents. Thus, we performed computational relativistic DFT and TDDFT studies to determine their optical properties. The ten complexes analyzed showed absorption in the visible light range. Furthermore, our analyses, including zero-field splitting (ZFS), allowed us to determine that the low-lying excited state locates below the 3LLCT states. Interestingly, seven of the ten analyzed complexes, whose corresponding PSB harbors an intramolecular hydrogen bond (IHB), exhibited luminescent emission that could be suitable for biological purposes: large Stokes shift, emission in the range 600-700 nm and τ in the order of 10-2 to 10-3 s. Conversely, the three complexes lacking the IHB due to two halogen substituents in the corresponding PSB showed a predicted emission with the lowest triplet excited state energy entering the NIR region. The main differences in the complexes' photophysical behavior have been explained by the energy gap law and time-resolved luminescence. These results emphasize the importance of choosing suitable substituents at the 4 and 6 positions in the phenolic ring of the PSB, which determine the presence of the IHB since they modulate the luminescence properties of the Re(i) core. Therefore, this study could predict Re(i) tricarbonyl complexes' properties, considering the desired emission features for biological and other applications.
Collapse
Affiliation(s)
- Rosaly Morales-Guevara
- Universidad Andres Bello, Programa de Doctorado en Físicoquímica Molecular, Facultad de Ciencias Exactas Santiago Chile
- Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello República 330 Santiago Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello República 330 Santiago Chile
| | - Dayán Paez-Hernández
- Universidad Andres Bello, Programa de Doctorado en Físicoquímica Molecular, Facultad de Ciencias Exactas Santiago Chile
- Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello República 330 Santiago Chile
| | - Alexander Carreño
- Universidad Andres Bello, Programa de Doctorado en Físicoquímica Molecular, Facultad de Ciencias Exactas Santiago Chile
- Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello República 330 Santiago Chile
| |
Collapse
|