1
|
Shestovskaya MV, Luss AL, Bezborodova OA, Kulikov PP, Antufrieva DA, Plotnikova EA, Makarov VV, Yudin VS, Pankratov AA, Keskinov AA. Radiosensitizing effects of heparinized magnetic iron oxide nanoparticles in colon cancer. Biomed Pharmacother 2024; 175:116668. [PMID: 38701565 DOI: 10.1016/j.biopha.2024.116668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The combination of radiation treatment and chemotherapy is currently the standard for management of cancer patients. However, safe doses do not often provide effective therapy, then pre-treated patients are forced to repeat treatment with often already increased tumor resistance to drugs and irradiation. One of the solutions we suggest is to improve primary course of radiation treatment via enhancing radiosensitivity of tumors by magnetic-guided iron oxide nanoparticles (magnetite). We obtained spherical heparinized iron oxide nanoparticles (hIONPs, ∼20 nm), characterized it by TEM, Infrared spectroscopy and DLS. Then hIONPs cytotoxicity was assessed for colon cancer cells (XTT assay) and cellular uptake of nanoparticles was analyzed with X-ray fluorescence. Combination of ionizing radiation (IR) and hIONPs in vitro caused an increase of G2/M arrest of cell cycle, mitotic errors and decrease in survival (compared with samples exposed to IR and hIONPs separately). The promising results were shown for magnetic-guided hIONPs in CT26-grafted BALB/C mice: the combination of intravenously administrated hIONPs and IR showed 20,8% T/C ratio (related to non-treated mice), while single radiation had no shown significant decrease in tumor growth (72,4%). Non-guided by magnets hIONPs with IR showed 57,9% of T/C. This indicates that ultra-small size and biocompatible molecule are not the key to successful nano-drug design, in each case, delivery technologies need to be improved when transferred to in vivo model.
Collapse
Affiliation(s)
- Maria V Shestovskaya
- Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, Pogodinskaya st. 10/1, Moscow 119435, Russia.
| | - Anna L Luss
- Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, Pogodinskaya st. 10/1, Moscow 119435, Russia
| | - Olga A Bezborodova
- P. Hertsen Moscow Oncology Research Institute - Branch of the National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinskiy p. 3, Moscow 125284, Russia
| | - Pavel P Kulikov
- Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, Pogodinskaya st. 10/1, Moscow 119435, Russia
| | - Daria A Antufrieva
- Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, Pogodinskaya st. 10/1, Moscow 119435, Russia
| | - Ekaterina A Plotnikova
- P. Hertsen Moscow Oncology Research Institute - Branch of the National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinskiy p. 3, Moscow 125284, Russia
| | - Valentin V Makarov
- Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, Pogodinskaya st. 10/1, Moscow 119435, Russia
| | - Vladimir S Yudin
- Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, Pogodinskaya st. 10/1, Moscow 119435, Russia
| | - Andrey A Pankratov
- P. Hertsen Moscow Oncology Research Institute - Branch of the National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinskiy p. 3, Moscow 125284, Russia
| | - Anton A Keskinov
- Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, Pogodinskaya st. 10/1, Moscow 119435, Russia
| |
Collapse
|
2
|
Akhtar MF, Afzaal A, Saleem A, Roheel A, Khan MI, Imran M. A comprehensive review on the applications of ferrite nanoparticles in the diagnosis and treatment of breast cancer. Med Oncol 2024; 41:53. [PMID: 38198041 DOI: 10.1007/s12032-023-02277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Various conventional treatments including endocrine therapy, radiotherapy, surgery, and chemotherapy have been used for several decades to treat breast cancer; however, these therapies exhibit various life-threatening and debilitating adverse effects in patients. Additionally, combination therapies are required for prompt action as well as to prevent drug resistance toward standard breast cancer medications. Ferrite nanoparticles (NPs) are increasingly gaining momentum for their application in the diagnosis and treatment of breast cancer. Spinel ferrites are particularly used against breast cancer and have shown in vitro and in vivo better efficacy as compared to conventional cancer therapies. Magnetic resonance imaging contrast agents, magnetic particle imaging tracers, cell separation, and immune assays are some aspects related to the diagnosis of breast cancer against which different ferrite NPs have been successfully evaluated. Moreover, citrate-coated nickel ferrite, Mg/Zn ferrites, poly amidoamine dendrimers, cobalt ferrites, graphene oxide cobalt ferrites, doxorubicin functionalized cobalt ferrites, chitosan-coated zinc ferrites, PEG-coated cobalt ferrite, and copper ferrite NPs have demonstrated antiproliferative action against different breast cancer cells. Oxaliplatin-loaded polydopamine/BSA-copper ferrites, functionalized cobalt and zinc ferrites of curcumin, oxaliplatin-copper ferrite NPs, tamoxifen/diosgenin encapsulated ZnO/Mn ferrites, and fabricated core-shell fibers of doxorubicin have been developed to increase the bioavailability and anti-proliferative effect and decrease the toxicity of anticancer drugs. These ferrite NPs showed an anticancer effect at different doses in the presence or absence of an external magnetic field. The present review covers the in-depth investigations of ferrite NPs for the diagnosis and management of breast cancer.
Collapse
Affiliation(s)
- Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Aysha Afzaal
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Amna Roheel
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
| |
Collapse
|
3
|
Kapnick SM, Martin CA, Jewell CM. Engineering metabolism to modulate immunity. Adv Drug Deliv Rev 2024; 204:115122. [PMID: 37935318 PMCID: PMC10843796 DOI: 10.1016/j.addr.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Metabolic programming and reprogramming have emerged as pivotal mechanisms for altering immune cell function. Thus, immunometabolism has become an attractive target area for treatment of immune-mediated disorders. Nonetheless, many hurdles to delivering metabolic cues persist. In this review, we consider how biomaterials are poised to transform manipulation of immune cell metabolism through integrated control of metabolic configurations to affect outcomes in autoimmunity, regeneration, transplant, and cancer. We emphasize the features of nanoparticles and other biomaterials that permit delivery of metabolic cues to the intracellular compartment of immune cells, or strategies for altering signals in the extracellular space. We then provide perspectives on the potential for reciprocal regulation of immunometabolism by the physical properties of materials themselves. Lastly, opportunities for clinical translation are highlighted. This discussion contributes to our understanding of immunometabolism, biomaterials-based strategies for altering metabolic configurations in immune cells, and emerging concepts in this evolving field.
Collapse
Affiliation(s)
- Senta M Kapnick
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA
| | - Corinne A Martin
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, 22 S Greene Street, Suite N9E17, Baltimore, MD, USA.
| |
Collapse
|
4
|
Singh S, Akhil Varri VS, Parekh K, Misra SK. Enhanced therapeutic action of Trastuzumab loaded Zn xMn 1-xFe 2O 4 nanoparticles using a pre-treatment step for hyperthermia treatment of HER2+ breast cancer. Colloids Surf B Biointerfaces 2023; 232:113579. [PMID: 37864913 DOI: 10.1016/j.colsurfb.2023.113579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/23/2023]
Abstract
In this study, Ferrites (Fe3O4, MnFe2O4, ZnFe2O4) and different stoichiometric ratios of ZnxMn1-xFe2O4 (x = 0.2, 0.4, 0.6, and 0.8) nanoparticles (<15 nm) were synthesized by microwave-assisted method and optimised for hyperthermia studies. The selection of the optimised variant of ferrite i.e. Zn0.4Mn0.6Fe2O4 was found to be the best variant based on VSM (38.14 emu g-1) hyperthermia-based temperature rise (maximum ΔT of 38 °C), SAR and ILP values. Trastuzumab, which is known to bind with HER2 receptors of breast cancer was chemically tethered onto Zn0.4Mn0.6Fe2O4 nanoparticles through EDC/NHS coupling with a loading efficiency of 80%. The attached Trastuzumab aided during the pre-treatment step by aiding in the internalisation of Zn0.4Mn0.6Fe2O4 nanoparticles, with cellular uptake of 11% in SK-BR-3 (cancerous HER2+) cells compared to ∼5% for MDA-MB-231 (cancerous HER2-) and RPE-1 (non-cancerous) cells. In the presence of a hyperthermia trigger for 15 mins, ZnxMn1-xFe2O4 -Trastuzumab formulation had a maximum therapeutic effect by reducing the SK-BR-3 cell viability to 14% without adversely affecting the RPE-1 cells. The mechanism of ZnxMn1-xFe2O4-Trastuzumab combination was examined using an internalisation study, MTT-based viability, proliferation study, and ROS generation assay. By utilizing both Trastuzumab and hyperthermia, we achieve their synergistic anticancer properties while minimizing the drug requirement and reducing any effect on non-cancerous cells.
Collapse
Affiliation(s)
- Simranjit Singh
- Materials Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382355, India
| | | | - Kinnari Parekh
- Dr. K C Patel R & D Centre, Charotar University of Science and Technology, Changa, 388421 Gujarat, India
| | - Superb K Misra
- Materials Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
5
|
Shestovskaya MV, Luss AL, Bezborodova OA, Makarov VV, Keskinov AA. Iron Oxide Nanoparticles in Cancer Treatment: Cell Responses and the Potency to Improve Radiosensitivity. Pharmaceutics 2023; 15:2406. [PMID: 37896166 PMCID: PMC10610190 DOI: 10.3390/pharmaceutics15102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The main concept of radiosensitization is making the tumor tissue more responsive to ionizing radiation, which leads to an increase in the potency of radiation therapy and allows for decreasing radiation dose and the concomitant side effects. Radiosensitization by metal oxide nanoparticles is widely discussed, but the range of mechanisms studied is not sufficiently codified and often does not reflect the ability of nanocarriers to have a specific impact on cells. This review is focused on the magnetic iron oxide nanoparticles while they occupied a special niche among the prospective radiosensitizers due to unique physicochemical characteristics and reactivity. We collected data about the possible molecular mechanisms underlying the radiosensitizing effects of iron oxide nanoparticles (IONPs) and the main approaches to increase their therapeutic efficacy by variable modifications.
Collapse
Affiliation(s)
- Maria V. Shestovskaya
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Schukinskaya st. 5/1, Moscow 119435, Russia; (A.L.L.)
| | - Anna L. Luss
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Schukinskaya st. 5/1, Moscow 119435, Russia; (A.L.L.)
- The Department of Technology of Chemical, Pharmaceutical and Cosmetic Products Mendeleev of University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Olga A. Bezborodova
- P. Hertsen Moscow Oncology Research Institute of the National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinskiy p. 3, Moscow 125284, Russia;
| | - Valentin V. Makarov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Schukinskaya st. 5/1, Moscow 119435, Russia; (A.L.L.)
| | - Anton A. Keskinov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Schukinskaya st. 5/1, Moscow 119435, Russia; (A.L.L.)
| |
Collapse
|
6
|
Du L, Chen L, Liu F, Wang W, Huang H. Nose-to-brain drug delivery for the treatment of CNS disease: New development and strategies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:255-297. [PMID: 37783558 DOI: 10.1016/bs.irn.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Delivering drugs to the brain has always been a challenging task due to the restrictive properties of the blood-brain barrier (BBB). Intranasal delivery is therefore emerging as an efficient method of administration, making it easy to self-administration and thus provides a non-invasive and painless alternative to oral and parenteral administration for delivering therapeutics to the central nervous system (CNS). Recently, drug formulations have been developed to further enhance this nose-to-brain transport, primarily using nanoparticles (NPs). Therefore, the purposes of this review are to highlight and describe the anatomical basis of nasal-brain pathway and provide an overview of drug formulations and current drugs for intranasal administration in CNS disease.
Collapse
Affiliation(s)
- Li Du
- Biotherapeutic Research Center, Beijing Tsinghua Changgung Hospital, Beijing, P.R. China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital of Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Fangfang Liu
- Department of Neurology, Jilin City Central Hospital, Jilin, China
| | - Wenya Wang
- Biotherapeutic Research Center, Beijing Tsinghua Changgung Hospital, Beijing, P.R. China,.
| | - Hongyun Huang
- Institute of Neurorestoratology, Third Medical Center of General Hospital of PLA, Beijing, P.R. China; Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China.
| |
Collapse
|
7
|
Orel VB, Papazoglou ΑS, Tsagkaris C, Moysidis DV, Papadakos S, Galkin OY, Orel VE, Syvak LA. Nanotherapy based on magneto-mechanochemical modulation of tumor redox state. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1868. [PMID: 36289050 DOI: 10.1002/wnan.1868] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 05/13/2023]
Abstract
Magnetic nanoparticles (MNs) are typically used as contrast agents for magnetic resonance imaging or as drug carriers with a remotely controlled delivery to the tumor. However, they can also potentiate the action of anticancer drugs under the influence of applied constant magnetic (CMFs) and electromagnetic fields (EMFs). This review demonstrates the role of magneto-mechanochemical effects produced by MNs alone and loaded with anticancer agents (MNCs) in response to CMFs and EMFs for modulation of tumor redox state. The combined treatment is suggested to act by two mechanisms: spin-dependent electron transport propagates free radical chain reactions, while magnetomechanical interactions cause conformational changes in drug molecules loaded onto MNs and generate reactive oxygen species (ROS). By adjusting the parameters of CMFs and EMFs during the magneto-mechanochemical synthesis and subsequent treatment, it is possible to modulate ROS production and switch redox signaling involved in ERK1/2 and NF-κB pathways from initiation of tumor growth to inhibition. Observations of tumor volume in different animal models and treatment combinations reported a 6%-70% reduction as compared with conventional drugs. Despite these results, there is a general lack of research in magnetic nanotheranostics that link redox changes across multiple levels of organization in the tumor-bearing host. Further multidisciplinary studies with more focus on the relationship between the electron transport processes in biomolecules and their effects on the tumor-host interaction should accelerate the clinical translation of magnetic nanotheranostics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Valerii B Orel
- National Cancer Institute, Kyiv, Ukraine
- Faculty of Biomedical Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | | | - Christos Tsagkaris
- Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
| | - Dimitrios V Moysidis
- Department of Cardiology, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | | | - Olexander Yu Galkin
- Faculty of Biomedical Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | - Valerii E Orel
- National Cancer Institute, Kyiv, Ukraine
- Faculty of Biomedical Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | | |
Collapse
|
8
|
Ping J, Du J, Ouyang R, Miao Y, Li Y. Recent advances in stimuli-responsive nano-heterojunctions for tumor therapy. Colloids Surf B Biointerfaces 2023; 226:113303. [PMID: 37086684 DOI: 10.1016/j.colsurfb.2023.113303] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
Stimuli-responsive catalytic therapy based on nano-catalysts has attracted much attention in the field of biomedicine for tumor therapy, due to its excellent and unique properties. However, the complex tumor microenvironment conditions and the rapid charge recombination in the catalyst limit catalytic therapy's effectiveness and further development. Effective heterojunction nanomaterials are constructed to address these problems to improve catalytic performance. Specifically, on the one hand, the band gap of the material is adjusted through the heterojunction structure to promote the charge separation efficiency under exogenous stimulation and further improve the catalytic capacity. On the other hand, the construction of a heterojunction structure can not only preserve the function of the original catalyst but also achieve significantly enhanced synergistic therapy ability. This review summarized the construction and functions of stimuli-responsive heterojunction nanomaterials under the excitation of X-rays, visible-near infrared light, and ultrasound in recent years, and further introduces their application in cancer therapy. Hopefully, the summary of stimuli-responsive heterojunction nanomaterials' applications will help researchers promote the development of nanomaterials in cancer therapy.
Collapse
Affiliation(s)
- Jing Ping
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Du
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruizhuo Ouyang
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
9
|
Kulpa-Greszta M, Tomaszewska A, Dziedzic A, Pązik R. Temperature effects induced by NIR photo-stimulation within I st and II nd optical biological windows of seed-mediated multi-shell nanoferrites. Dalton Trans 2023; 52:2580-2591. [PMID: 36756813 DOI: 10.1039/d2dt04178b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Different types of ferrite core-shell structures, namely CoFe2O4@CoFe2O4, CoFe2O4@Fe3O4, CoFe2O4@MnFe2O4, and CoFe2O4@MnFe2O4@ZnFe2O4, were prepared by the seed-mediated approach. We show that this synthetic methodology offers great and important flexibility in the engineering of multi-shell ferrite nanoparticles which can be further used in various advanced applications. This impressive tool can be used for particle size tuning of homo- and heterostructures through convenient control of the concentration of metal acetylacetonates without the necessity of changing synthetic parameters, i.e., temperature, time, and solvent. The contactless conversion of laser light within Ist (808 nm) and IInd (1122 nm) biological optical windows was studied on the fabricated ferrite core-shell materials which showed promising heating effects that can be a basis of their practical exploitation in the biomedical field.
Collapse
Affiliation(s)
- Magdalena Kulpa-Greszta
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | - Anna Tomaszewska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | - Andrzej Dziedzic
- Department of Spectroscopy and Materials, Institute of Physics, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Robert Pązik
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| |
Collapse
|
10
|
Abbas G, Cui M, Wang D, Li M, Zhang XE. Construction of Genetically Encoded Biosensors to Monitor Subcellular Compartment-Specific Glutathione Response to Chemotherapeutic Drugs in Acute Myeloid Leukemia Cells. Anal Chem 2023; 95:2838-2847. [PMID: 36701391 PMCID: PMC9909732 DOI: 10.1021/acs.analchem.2c04255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
Glutathione (GSH), the constituent of the redox buffer system, is a scavenger of reactive oxygen species (ROS), and its ratio to oxidized glutathione (GSSG) is a key indicator of oxidative stress in the cell. Acute myeloid leukemia (AML) is a highly aggressive hematopoietic malignancy characterized by aberrant levels of reduced and oxidized GSH due to oxidative stress. Therefore, the real-time, dynamic, and highly sensitive detection of GSH/GSSG in AML cells is of great interest for the clinical diagnosis and treatment of leukemia. The application of genetically encoded sensors to monitor GSH/GSSG levels in AML cells is not explored, and the underlying mechanism of how the drugs affect GSH/GSSG dynamics remains unclear. In this study, we developed subcellular compartment-specific sensors to monitor GSH/GSSG combined with high-resolution fluorescence microscopy that provides insights into basal GSH/GSSG levels in the cytosol, mitochondria, nucleus, and endoplasmic reticulum of AML cells, in a decreasing order, revealing substantial heterogeneity of GSH/GSSG level dynamics in different subcellular compartments. Further, we investigated the response of GSH/GSSG ratio in AML cells caused by Prussian blue and Fe3O4 nanoparticles, separately and in combination with cytarabine, pointing to steep gradients. Moreover, cytarabine and doxorubicin downregulated the GSH/GSSG levels in different subcellular compartments. Similarly, live-cell imaging showed a compartment-specific decrease in response to various drugs, such as CB-839, parthenolide (PTL), and piperlongumine (PLM). The enzymatic activity assay revealed the mechanism underlying fluctuations in GSH/GSSG levels in different subcellular compartments mediated by these drugs in the GSH metabolic pathway, suggesting some potential therapeutic targets in AML cells.
Collapse
Affiliation(s)
- Ghulam Abbas
- National
Laboratory of Biomacromolecules, Institute
of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengmeng Cui
- National
Laboratory of Biomacromolecules, Institute
of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dianbing Wang
- National
Laboratory of Biomacromolecules, Institute
of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Li
- National
Laboratory of Biomacromolecules, Institute
of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xian-En Zhang
- National
Laboratory of Biomacromolecules, Institute
of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Faculty
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Glassy-like Metal Oxide Particles Embedded on Micrometer Thicker Alginate Films as Promising Wound Healing Nanomaterials. Int J Mol Sci 2022; 23:ijms23105585. [PMID: 35628396 PMCID: PMC9142123 DOI: 10.3390/ijms23105585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/29/2022] Open
Abstract
Micrometer-thicker, biologically responsive nanocomposite films were prepared starting from alginate-metal alkoxide colloidal solution followed by sol-gel chemistry and solvent removal through evaporation-induced assembly. The disclosed approach is straightforward and highly versatile, allowing the entrapment and growth of a set of glassy-like metal oxide within the network of alginate and their shaping as crake-free transparent and flexible films. Immersing these films in aqueous medium triggers alginate solubilization, and affords water-soluble metal oxides wrapped in a biocompatible carbohydrate framework. Biological activity of the nano-composites films was also studied including their hemolytic activity, methemoglobin, prothrombin, and thrombine time. The effect of the films on fibroblasts and keratinocytes of human skin was also investigated with a special emphasis on the role played by the incorporated metal oxide. This comparative study sheds light on the crucial biological response of the ceramic phase embedded inside of the films, with titanium dioxide being the most promising for wound healing purposes.
Collapse
|
12
|
Wang Y, Gao F, Li X, Niu G, Yang Y, Li H, Jiang Y. Tumor microenvironment-responsive fenton nanocatalysts for intensified anticancer treatment. J Nanobiotechnology 2022; 20:69. [PMID: 35123493 PMCID: PMC8817594 DOI: 10.1186/s12951-022-01278-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Chemodynamic therapy (CDT) based on Fenton or Fenton-like reactions is an emerging cancer treatment that can both effectively fight cancer and reduce side effects on normal cells and tissues, and it has made important progress in cancer treatment. The catalytic efficiency of Fenton nanocatalysts(F-NCs) directly determines the anticancer effect of CDT. To learn more about this new type of therapy, this review summarizes the recent development of F-NCs that are responsive to tumor microenvironment (TME), and detailedly introduces their material design and action mechanism. Based on the deficiencies of them, some effective strategies to significantly improve the anticancer efficacy of F-NCs are highlighted, which mainly includes increasing the temperature and hydrogen peroxide concentration, reducing the pH, glutathione (GSH) content, and the dependence of F-NCs on acidic environment in the TME. It also discusses the differences between the effect of multi-mode therapy with external energy (light and ultrasound) and the single-mode therapy of CDT. Finally, the challenges encountered in the treatment process, the future development direction of F-NCs, and some suggestions are analyzed to promote CDT to enter the clinical stage in the near future.
Collapse
|
13
|
OUP accepted manuscript. Nutr Rev 2022; 80:1974-1984. [DOI: 10.1093/nutrit/nuac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Stueber DD, Villanova J, Aponte I, Xiao Z, Colvin VL. Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends. Pharmaceutics 2021; 13:943. [PMID: 34202604 PMCID: PMC8309177 DOI: 10.3390/pharmaceutics13070943] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 06/16/2021] [Indexed: 12/23/2022] Open
Abstract
The use of magnetism in medicine has changed dramatically since its first application by the ancient Greeks in 624 BC. Now, by leveraging magnetic nanoparticles, investigators have developed a range of modern applications that use external magnetic fields to manipulate biological systems. Drug delivery systems that incorporate these particles can target therapeutics to specific tissues without the need for biological or chemical cues. Once precisely located within an organism, magnetic nanoparticles can be heated by oscillating magnetic fields, which results in localized inductive heating that can be used for thermal ablation or more subtle cellular manipulation. Biological imaging can also be improved using magnetic nanoparticles as contrast agents; several types of iron oxide nanoparticles are US Food and Drug Administration (FDA)-approved for use in magnetic resonance imaging (MRI) as contrast agents that can improve image resolution and information content. New imaging modalities, such as magnetic particle imaging (MPI), directly detect magnetic nanoparticles within organisms, allowing for background-free imaging of magnetic particle transport and collection. "Lab-on-a-chip" technology benefits from the increased control that magnetic nanoparticles provide over separation, leading to improved cellular separation. Magnetic separation is also becoming important in next-generation immunoassays, in which particles are used to both increase sensitivity and enable multiple analyte detection. More recently, the ability to manipulate material motion with external fields has been applied in magnetically actuated soft robotics that are designed for biomedical interventions. In this review article, the origins of these various areas are introduced, followed by a discussion of current clinical applications, as well as emerging trends in the study and application of these materials.
Collapse
Affiliation(s)
- Deanna D. Stueber
- Center for Biomedical Engineering, School of Engineering, Brown University, 171 Meeting Street, Providence, RI 02912, USA; (D.D.S.); (J.V.); (I.A.)
| | - Jake Villanova
- Center for Biomedical Engineering, School of Engineering, Brown University, 171 Meeting Street, Providence, RI 02912, USA; (D.D.S.); (J.V.); (I.A.)
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI 02912, USA;
| | - Itzel Aponte
- Center for Biomedical Engineering, School of Engineering, Brown University, 171 Meeting Street, Providence, RI 02912, USA; (D.D.S.); (J.V.); (I.A.)
| | - Zhen Xiao
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI 02912, USA;
| | - Vicki L. Colvin
- Center for Biomedical Engineering, School of Engineering, Brown University, 171 Meeting Street, Providence, RI 02912, USA; (D.D.S.); (J.V.); (I.A.)
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI 02912, USA;
| |
Collapse
|