1
|
Soares IN, Peterson KA, de Souza GLC. Probing Antioxidant-Related Properties for Phenolic Compounds. J Phys Chem A 2024; 128:2727-2736. [PMID: 38538553 DOI: 10.1021/acs.jpca.3c08406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In this work, properties related to antioxidant-potential mechanisms (such as the bond dissociation enthalpy, BDE, for the homolytic cleavage of the O-H bond and ionization energies, IEs) were determined for phenol, pyrocatechol, and gallic acid (GA). Both the protonated and deprotonated forms of GA were investigated. The Feller-Peterson-Dixon (FPD) composite method was employed with a variety of computational approaches, i.e., density functional theory, Möller-Plesset perturbation theory, and coupled-cluster-based methods, in combination with large correlation consistent basis sets with extrapolation to the complete basis set limit and consideration of core electron correlation effects. FPD results were compared to experimental and computational data available in the literature, presenting good agreement. For example, the FPD BDE (298 K) obtained for phenol, which was based on valence-correlated MP2/CBS calculations with contributions from correlating all electrons, was determined to be 87.56 kcal/mol, a value that is 0.42 kcal/mol lower than the result obtained in the most recent experiments, 87.98 ± 0.62. Calibration against coupled-cluster calculations was also carried out for phenol. We expect that the outcomes gathered here may help in establishing a general protocol for computational chemists that are interested in determining antioxidant-related properties for phenolic compounds with considerable accuracy as well as to motivate future IE measurements (particularly for GA) to be accomplished in the near future.
Collapse
Affiliation(s)
- Iuri N Soares
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060-900, Brazil
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Gabriel L C de Souza
- Centro de Ciências da Natureza, Universidade Federal de São Carlos, Buri, São Paulo 18290-000, Brazil
| |
Collapse
|
2
|
Mendes RA, da Mata VAS, Brown A, de Souza GLC. A density functional theory benchmark on antioxidant-related properties of polyphenols. Phys Chem Chem Phys 2024; 26:8613-8622. [PMID: 38275280 DOI: 10.1039/d3cp04412b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
In this work, we present a density functional theory benchmark on antioxidant-related properties for a series of six polyphenols that are well-known antioxidants: caffeic acid, cyanidin, ellagic acid, gallic acid, myricetin, and phloretin. Computations on the 24 O-H bond dissociation enthalpies (BDEs) and 6 ionization potentials (IPs) were performed using twenty-three exchange-correlation functionals combined with four different basis sets in the gas-phase, water, and methanol; calibration against the Domain-based Local Pair Natural Orbital CCSD(T) (DLPNO-CCSD(T)) approach was employed. Mean absolute deviation (MAD) as well as linear fitting results suggested the LC-PBE approach as the most suitable for O-H BDEs in the gas-phase. The LC-PBE, M06-2X, and M05-2X results presented the smallest MADs for O-H BDEs when compared to the reference, in water. The LC-PBE results had the smallest MADs for IPs in the gas-phase while M05-2X, M06-2X, LC-PBE, and LC-ωPBE exhibited the best results for MAD in water. We expect the outcomes from the present work will serve as general guidance for researchers working in the field.
Collapse
Affiliation(s)
- Rodrigo A Mendes
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, 78060-900, Brazil
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Victor A S da Mata
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, 78060-900, Brazil
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Gabriel L C de Souza
- Centro de Ciências da Natureza, Universidade Federal de São Carlos, Buri, São Paulo, 18290-000, Brazil.
| |
Collapse
|
3
|
Rusdipoetra RA, Suwito H, Puspaningsih NNT, Haq KU. Theoretical insight of reactive oxygen species scavenging mechanism in lignin waste depolymerization products. RSC Adv 2024; 14:6310-6323. [PMID: 38380240 PMCID: PMC10877321 DOI: 10.1039/d3ra08346b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Apart from natural products and synthesis, phenolic compounds can be produced from the depolymerization of lignin, a major waste in biofuel and paper production. This process yields a plethora of aryl propanoid phenolic derivatives with broad biological activities, especially antioxidant properties. Due to its versatility, our study focuses on investigating the antioxidant mechanisms of several phenolic compounds obtained from renewable and abundant resources, namely, syringol (Hs), 4-allylsyringol (HAs), 4-propenylsyringol (HPns), and 4-propylsyringol (HPs). Employing the density functional theory (DFT) approach in conjunction with the QM-ORSA protocol, we aim to explore the reactivity of these compounds in neutralizing hydroperoxyl radicals in physiological and non-polar media. Kinetic and thermodynamic parameter calculations on the antioxidant activity of these compounds were also included in this study. Additionally, our research utilizes the activation strain model (ASM) for the first time to explain the reactivity of the HT and RAF mechanisms in the peroxyl radical scavenging process. It is predicted that HPs has the best rate constant in both media (1.13 × 108 M-1 s-1 and 1.75 × 108 M-1 s-1, respectively). Through ASM analysis, it is observed that the increase in the interaction energy due to the formation of intermolecular hydrogen bonds during the reaction is an important feature for accelerating the hydrogen transfer process. Furthermore, by examining the physicochemical and toxicity parameters, only Hs is not suitable for further investigation as a therapeutic agent because of potential toxicity and mutagenicity. However, overall, all compounds are considered potent HOO˙ scavengers in lipid-rich environments compared to previously studied antioxidants.
Collapse
Affiliation(s)
- Rahmanto Aryabraga Rusdipoetra
- Bioinformatic Research Group, Research Centre of Bio-Molecule Engineering (BIOME), Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
- Department of Chemistry, Faculty of Science and Technology, Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
| | - Hery Suwito
- Department of Chemistry, Faculty of Science and Technology, Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
| | - Ni Nyoman Tri Puspaningsih
- Department of Chemistry, Faculty of Science and Technology, Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
- Proteomic Research Group, Research Centre of Bio-Molecule Engineering (BIOME), Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
| | - Kautsar Ul Haq
- Bioinformatic Research Group, Research Centre of Bio-Molecule Engineering (BIOME), Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
- Department of Chemistry, Faculty of Science and Technology, Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
| |
Collapse
|
4
|
Spiegel M, Ciardullo G, Marino T, Russo N. Computational investigation on the antioxidant activities and on the M pro SARS-CoV-2 non-covalent inhibition of isorhamnetin. Front Chem 2023; 11:1122880. [PMID: 36762196 PMCID: PMC9902383 DOI: 10.3389/fchem.2023.1122880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
In the present work, we report a computational study on some important chemical properties of the flavonoid isorhamnetin, used in traditional medicine in many countries. In the course of the study we determined the acid-base equilibria in aqueous solution, the possible reaction pathways with the •OOH radical and the corresponding kinetic constants, the complexing capacity of copper ions, and the reduction of these complexes by reducing agents such as superoxide and ascorbic anion by using density functional level of theory Density Functional Theory. Finally, the non-covalent inhibition ability of the SARS-CoV-2 main protease enzyme by isorhamnetin was examined by molecular dynamics (MD) and docking investigation.
Collapse
Affiliation(s)
- Maciej Spiegel
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Cosenza, Italy,Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Wroclaw, Poland
| | - Giada Ciardullo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Cosenza, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Cosenza, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Cosenza, Italy,*Correspondence: Nino Russo,
| |
Collapse
|
5
|
Spiegel M, Sroka Z. Quantum-mechanical characteristics of apigenin: Antiradical, metal chelation and inhibitory properties in physiologically relevant media. Fitoterapia 2023; 164:105352. [PMID: 36400153 DOI: 10.1016/j.fitote.2022.105352] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Density functional theory was used to examine the antioxidant activity of apigenin. All protonated species that are present in a non-negligible population at physiological pH were considered in the study. The ability to scavenge the hydroperoxide radical was evaluated in lipid and aqueous environments. The capacity to halt the Fenton reaction by chelating Fe(III) and Cu(II) ions was also investigated, as was the ability to inhibit xanthine oxidase. The results indicate that these activities may be particularly important in describing the beneficial effects of apigenin, especially because of its lower anti-•OOH potential than Trolox or vitamin C. The findings underscore the significant role of dianion in the antiradical and chelating properties, despite its presence in much lower molar fractions than other ions.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland.
| | - Zbigniew Sroka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
6
|
Primary and secondary antioxidant properties of scutellarin and scutellarein in water and lipid-like environments: A theoretical investigation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Structural Characterization of Peripolin and Study of Antioxidant Activity of HMG Flavonoids from Bergamot Fruit. Antioxidants (Basel) 2022; 11:antiox11101847. [PMID: 36290571 PMCID: PMC9598738 DOI: 10.3390/antiox11101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The structural characterization of a new flavonoid from bergamot fruit (Citrus bergamia Risso) carrying the 3-hydroxy-3-methyl glutaryl (HMG) ester moiety has been accomplished, and its antioxidant ability was tested from a chemical point of view. The peculiarity of the new molecule, named peripolin, relies on the presence of the HMG chemical group linked to the sugar portion of neoeriocitrin; the structure was elucidated using both high-resolution mass spectrometry and nuclear magnetic resonance experiments performed on the purified molecule extracted from the fruit. The antioxidant ability of the new molecule was tested by classical chemical approaches, such as DPPH, ABTS and FRAP assays, and from a theoretical point of view. 1H and 13C NMR experiments and HR-ESI-MS/MS experiments show unequivocally that the HMG moiety is linked to the primary position of the glucose unit of neohesperidose, while the chemical tests and the computational results show that peripolin possesses strong antioxidant behavior, similar to that of neoeriocitrin and remarkably higher respect to the other flavonoids present in the fruit. Furthermore, the quantitative assays carried out by UPLC-MS/MS showed that its amount in the fruit is similar to that of the other main flavonoids. Furthermore, molecular dynamics simulations allowed us to investigate the possible conformations adopted by the antioxidants in the presence of water molecules. In particular, the switch of open-closed conformations of HMG-containing species was evidenced. As far as the reaction with DPPH, the calculation of ΔGrea supported the experimental outcomes regarding the peripolin and neoeriocitrin activity. In conclusion, bergamot fruit, already known for its potential to lower the level of blood cholesterol, has been proven to contain molecules such as neoeriocitrin and the newly characterized peripolin, which could have important in-vivo antioxidant characteristics.
Collapse
|
8
|
Spiegel M, Marino T, Prejanò M, Russo N. Antioxidant and copper-chelating power of new molecules suggested as multiple target agents against Alzheimer's disease. A theoretical comparative study. Phys Chem Chem Phys 2022; 24:16353-16359. [PMID: 35762619 DOI: 10.1039/d2cp01918c] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this study, the scavenging activity against OOH radicals and the copper-chelating ability of two new synthesized molecules (named L1 and L2) that can act as multiple target agents against Alzheimer's disease have been investigated at the density functional theory level. The pKa and molar fractions at physiological pH have been predicted. The main antioxidant reaction mechanisms in lipid-like and water environments have been considered and the relative rate constants determined. The copper-chelating ability of the two compounds has also been explored at different coordination sites and computing the complexation kinetic constants. Results show the L1 compound is a more effective radical scavenging and copper-chelating agent than L2.
Collapse
Affiliation(s)
- Maciej Spiegel
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87136 Rende, CS, Italy.
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87136 Rende, CS, Italy.
| | - Mario Prejanò
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-10691, Sweden
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87136 Rende, CS, Italy.
| |
Collapse
|
9
|
Analytical and Theoretical Studies of Antioxidant Properties of Chosen Anthocyanins; A Structure-Dependent Relationships. Int J Mol Sci 2022; 23:ijms23105432. [PMID: 35628243 PMCID: PMC9141991 DOI: 10.3390/ijms23105432] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
The relationship between the structure and the antiradical and antioxidant activities of three anthocyanidins, namely peonidin, petunidin, and delphinidin, and their glucosides was investigated in this study. The ability of anthocyanins to scavenge free radicals was determined using DPPH● assay, whereas the inhibition of peroxidation in liposomes in relation to a model membrane that imitated the composition of a lipid membrane in tumor cells was specified using the fluorimetric method. To explore this issue at the atomistic level, density functional theory studies were applied. It was shown that glycosides performed better than anthocyanidins in protecting membranes against oxidation. The highest redox potential was demonstrated by anthocyanidins with the highest number of hydroxyl groups in the B ring in the order as follows: (Dp > Pt > Pn), and the same relationship was proven for their glucosides. The majority of the compounds studied here proved to be better antioxidants than ascorbic acid. They showed consistent electrodonating properties and though the f-HAT mechanism became more feasible with each consecutive deprotonation. Glycosylation did not have a direct impact on reactivity, apart from peonidin and petunidin in the study of which it was found that this process was responsible for lifting off steric hindrance between B and C rings and rendering certain pathways more feasible. Kinetic and molecular dynamics are essential to properly describe the membrane’s lipid oxidation.
Collapse
|
10
|
Spiegel M. Current Trends in Computational Quantum Chemistry Studies on Antioxidant Radical Scavenging Activity. J Chem Inf Model 2022; 62:2639-2658. [PMID: 35436117 PMCID: PMC9198981 DOI: 10.1021/acs.jcim.2c00104] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The antioxidative
nature of chemicals is now routinely studied
using computational quantum chemistry. Scientists are constantly proposing
new approaches to investigate those methods, and the subject is evolving
at a rapid pace. The goal of this review is to collect, consolidate,
and present current trends in a clear, methodical, and reference-rich
manner. This paper is divided into several sections, each of which
corresponds to a different stage of elaborations: preliminary concerns,
electronic structure analysis, and general reactivity (thermochemistry
and kinetics). The sections are further subdivided based on methodologies
used. Concluding remarks and future perspectives are presented based
on the remaining elements.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
11
|
On the Scavenging Ability of Scutellarein against the OOH Radical in Water and Lipid-like Environments: A Theoretical Study. Antioxidants (Basel) 2022; 11:antiox11020224. [PMID: 35204107 PMCID: PMC8868326 DOI: 10.3390/antiox11020224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
The antioxidant capability of scutellarein, a flavonoid extracted from different plants of the Scutellaria family, was computationally predicted by considering its reaction with the OOH radical in both lipid-like and water environments. The pKa and equilibrium behavior in the aqueous phase were also calculated. Different reaction mechanisms involving the most populated species were considered. The work was performed by using the density functional level of theory. The individual, total, and fraction-corrected total rate constants were obtained. The results show that scutellarein has scavenging power against the hydroperoxyl radical similar to that of Trolox, which is generally used as a reference antioxidant.
Collapse
|