1
|
Ji Z, Liu H, Li J, Wang Y. Comprehensive quality evaluation of dried boletus slices based on fingerprinting and chemometrics. J Pharm Biomed Anal 2025; 252:116505. [PMID: 39388866 DOI: 10.1016/j.jpba.2024.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Mushrooms not only serve as a source of a wide range of nutrients in the structure of the human diet, but they have also received a great deal of attention in the field of biopharmaceuticals because of their wide range of medicinal benefits. Rapid quality certification of boletus (porcini) mushrooms is particularly important as a health food and as a potential source of medicines before purchase and production. Infrared (IR) spectroscopy is commonly used for rapid qualitative and quantitative analyses of foods and herbs. The Ultra Performance Liquid Chromatography (UPLC) combined with systematic fingerprinting quantification was used to analyze the quality consistency of Boletus edulis (B. edulis) from different geographic sources, and a method based on Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy combined with chemometrics for origin traceability and rapid prediction of nucleoside quality marker content of B. edulis dried slices was developed with the aim of achieving rapid, lossless, high-throughput and green quality authentication of raw materials for pharmaceutical products.
Collapse
Affiliation(s)
- Zhiyi Ji
- College of Resources and Environmental, Yunnan Agricultural University, Kunming 650201, China; Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Honggao Liu
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong 657000, China
| | - Jieqing Li
- College of Resources and Environmental, Yunnan Agricultural University, Kunming 650201, China.
| | - Yuanzhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| |
Collapse
|
2
|
Frańska M, Frański R. Application of Mass Spectrometry for Analysis of Nucleobases, Nucleosides and Nucleotides in Tea and Selected Herbs: A Critical Review of the Mass Spectrometric Data. Foods 2024; 13:2959. [PMID: 39335888 PMCID: PMC11431637 DOI: 10.3390/foods13182959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The main and most commonly known biological function of nucleobases, nucleosides, and nucleotides is usually associated with the fact that they are the building blocks of nucleic acids. However, these compounds also belong to plant secondary metabolites, although in that role they have attracted less attention than the others, e.g., terpenes, phenolics, or alkaloids. The former compounds are also important constituents of the human diet, e.g., as ingredients of tea and herbs, endowing them with specific taste qualities and pharmacological activities. Liquid chromatography-mass spectrometry seems to be the most important analytical method that permits the identification and determination of nucleobases, nucleosides, and nucleotides, along with the other metabolites. The main goal of this review is to discuss in detail the aspects of mass spectrometric detection of nucleobases, nucleosides, and nucleotides in tea and selected herbs. An important conclusion is that the identification of the compounds of interest should be performed not only on the basis of [M + H]+/[M - H]- ions but should also be confirmed by the respective product ions; however, as discussed in detail in this review, it may sometimes be problematic. It also clear that all difficulties that may be encountered when analyzing plant material are caused by the complexity of the analyzed samples and the need to analyze different classes of compounds, and this review absolutely does not debase any of the mentioned papers.
Collapse
Affiliation(s)
- Magdalena Frańska
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Rafał Frański
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| |
Collapse
|
3
|
Wang K, Song M, Mu X, Wu Z, Wu N, Zhang Y. Comparison and the lipid-lowering ability evaluation method discussion of Dendrobium officinale polysaccharides from different origins based on principal component analysis. Int J Biol Macromol 2023; 242:124707. [PMID: 37146861 DOI: 10.1016/j.ijbiomac.2023.124707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/07/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
As typical acetylated glucomannans, Dendrobium officinale polysaccharides (DOPs) from different origins differ in their structural characteristics and some of their physicochemical properties. To rapidly select D. officinale plants, we systematically investigate the differences among DOPs from different origins and analyzed the structural characteristics, such as the degree of acetylation and monosaccharide composition; the physicochemical properties, such as solubility, water absorption and apparent viscosity; and the lipid-lowering activity of the obtained DOPs. Principal component analysis (PCA), a method for analyzing multiple variables, was used to analyze the relationship between the physicochemical and structural properties, and lipid-lowering activity. It was found that the structural and physicochemical characteristics had significant effects on lipid-lowering activity, and DOPs with a high degree of acetylation, high apparent viscosity and large D-mannose-to-d-glucose ratio were associated with greater lipid-lowering activity. Therefore, this study provides a reference for the selection and application of D. officinale.
Collapse
Affiliation(s)
- Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Mengzi Song
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Xu Mu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zhijing Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Niuniu Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| |
Collapse
|
4
|
Zhao Q, Bian X, Shan C, Cheng J, Wang C, Xu Y, Xu M, Yan H, Qian D, Duan J. Quantitative analysis of nutrients for nucleosides, nucleobases and amino acids hidden behind five distinct regions-derived Poria cocos using ultra-performance liquid chromatography coupled with triple-quadrupole linear ion-trap tandem mass spectrometry. J Sep Sci 2022; 45:4039-4051. [PMID: 36084259 DOI: 10.1002/jssc.202200516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022]
Abstract
Poria cocos is an edible fungus used as a health product and traditional Chinese medicinal preparation. Nevertheless, little is known about its nutrients. In this study, ultra-high performance liquid chromatography coupled with triple-quadrupole linear ion-trap tandem mass spectrometry was conducted to quantify nucleosides, nucleobases, and amino acids in 32 batches of Poria cocos samples collected from Anhui, Sichuan, Hubei, Hunan and Guizhou. Subsequently, the linearity, precision, repeatability, stability, and recovery of our methods were validated. Samples from different regions were clearly separated by partial least squares discriminant analysis and cluster analysis. Our results suggested that Poria cocos samples from different geographical environments differed in nucleosides, nucleobases, and amino acids. The plot of variable importance for projection disclosed differential compositions of L-Leucine, Uridine, L-Asparagine, L-Glutamine, L-phenylalanine, L-Ornithine monohydrochloride, L-Hydroxyproline, Taurine and Inosine in Poria cocos from five regions. We found the highest content of total analytes, total amino acids and total non-essential amino acids in Poria cocos from Anhui, total essential amino acids in the Sichuan samples and total nucleosides in Hunan samples. Overall, we determined the content of Poria cocos-derived nucleosides, nucleobases, and amino acids, providing the foothold for further chemical mining and use of Poria cocos. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qiulong Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing, 210023, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaokun Bian
- Yancheng NO.1 People's Hospital, Yancheng, 224000, China
| | - Chenxiao Shan
- Institute of TCM-Related Comorbid Depression, Nanjing, 210023, China
| | - Jiaxin Cheng
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing, 210023, China
| | - Chunxue Wang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing, 210023, China
| | - Yi Xu
- Yancheng NO.1 People's Hospital, Yancheng, 224000, China
| | - Min Xu
- Institute of TCM-Related Comorbid Depression, Nanjing, 210023, China
| | - Hui Yan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing, 210023, China
| | - Dawei Qian
- Yancheng NO.1 People's Hospital, Yancheng, 224000, China
| | - Jinao Duan
- Yancheng NO.1 People's Hospital, Yancheng, 224000, China
| |
Collapse
|
5
|
Hao DC, Song Y, Xiao P, Zhong Y, Wu P, Xu L. The genus Chrysanthemum: Phylogeny, biodiversity, phytometabolites, and chemodiversity. FRONTIERS IN PLANT SCIENCE 2022; 13:973197. [PMID: 36035721 PMCID: PMC9403765 DOI: 10.3389/fpls.2022.973197] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/18/2022] [Indexed: 05/31/2023]
Abstract
The ecologically and economically important genus Chrysanthemum contains around 40 species and many hybrids and cultivars. The dried capitulum of Chrysanthemum morifolium (CM) Ramat. Tzvel, i.e., Flos Chrysanthemi, is frequently used in traditional Chinese medicine (TCM) and folk medicine for at least 2,200 years. It has also been a popular tea beverage for about 2,000 years since Han Dynasty in China. However, the origin of different cultivars of CM and the phylogenetic relationship between Chrysanthemum and related Asteraceae genera are still elusive, and there is a lack of comprehensive review about the association between biodiversity and chemodiversity of Chrysanthemum. This article aims to provide a synthetic summary of the phylogeny, biodiversity, phytometabolites and chemodiversity of Chrysanthemum and related taxonomic groups, focusing on CM and its wild relatives. Based on extensive literature review and in light of the medicinal value of chrysanthemum, we give some suggestions for its relationship with some genera/species and future applications. Mining chemodiversity from biodiversity of Chrysanthemum containing subtribe Artemisiinae, as well as mining therapeutic efficacy and other utilities from chemodiversity/biodiversity, is closely related with sustainable conservation and utilization of Artemisiinae resources. There were eight main cultivars of Flos Chrysanthemi, i.e., Hangju, Boju, Gongju, Chuju, Huaiju, Jiju, Chuanju and Qiju, which differ in geographical origins and processing methods. Different CM cultivars originated from various hybridizations between multiple wild species. They mainly contained volatile oils, triterpenes, flavonoids, phenolic acids, polysaccharides, amino acids and other phytometabolites, which have the activities of antimicrobial, anti-viral, antioxidant, anti-aging, anticancer, anti-inflammatory, and closely related taxonomic groups could also be useful as food, medicine and tea. Despite some progresses, the genetic/chemical relationships among varieties, species and relevant genera have yet to be clarified; therefore, the roles of pharmacophylogeny and omics technology are highlighted.
Collapse
Affiliation(s)
- Da-Cheng Hao
- School of Environment and Chemical Engineering, Biotechnology Institute, Dalian Jiaotong University, Dalian, China
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Yanjun Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yi Zhong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiling Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
6
|
Zhang C, Liu Z, Lu S, Xiao L, Xue Q, Jin H, Gan J, Li X, Liu Y, Liang X. Rapid Discrimination and Prediction of Ginsengs from Three Origins Based on UHPLC-Q-TOF-MS Combined with SVM. Molecules 2022; 27:molecules27134225. [PMID: 35807471 PMCID: PMC9268438 DOI: 10.3390/molecules27134225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Ginseng, which contains abundant ginsenosides, grows mainly in the Jilin, Liaoning, and Heilongjiang in China. It has been reported that the quality and traits of ginsengs from different origins were greatly different. To date, the accurate prediction of the origins of ginseng samples is still a challenge. Here, we integrated ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) with a support vector machine (SVM) for rapid discrimination and prediction of ginseng from the three main regions where it is cultivated in China. Firstly, we develop a stable and reliable UHPLC-Q-TOF-MS method to obtain robust information for 31 batches of ginseng samples after reasonable optimization. Subsequently, a rapid pre-processing method was established for the rapid screening and identification of 69 characteristic ginsenosides in 31 batches ginseng samples from three different origins. The SVM model successfully distinguished ginseng origin, and the accuracy of SVM model was improved from 83% to 100% by optimizing the normalization method. Six crucial quality markers for different origins of ginseng were screened using a permutation importance algorithm in the SVM model. In addition, in order to validate the method, eight batches of test samples were used to predict the regions of cultivation of ginseng using the SVM model based on the six selected quality markers. As a result, the proposed strategy was suitable for the discrimination and prediction of the origin of ginseng samples.
Collapse
Affiliation(s)
- Chi Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (C.Z.); (Z.L.); (S.L.); (L.X.); (J.G.); (Y.L.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
| | - Zhe Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (C.Z.); (Z.L.); (S.L.); (L.X.); (J.G.); (Y.L.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoming Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (C.Z.); (Z.L.); (S.L.); (L.X.); (J.G.); (Y.L.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
| | - Liujun Xiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (C.Z.); (Z.L.); (S.L.); (L.X.); (J.G.); (Y.L.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
| | - Qianqian Xue
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (C.Z.); (Z.L.); (S.L.); (L.X.); (J.G.); (Y.L.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
- Correspondence: (Q.X.); (H.J.)
| | - Hongli Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (C.Z.); (Z.L.); (S.L.); (L.X.); (J.G.); (Y.L.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
- Correspondence: (Q.X.); (H.J.)
| | - Jiapan Gan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (C.Z.); (Z.L.); (S.L.); (L.X.); (J.G.); (Y.L.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
| | - Xiaonong Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
| | - Yanfang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (C.Z.); (Z.L.); (S.L.); (L.X.); (J.G.); (Y.L.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (C.Z.); (Z.L.); (S.L.); (L.X.); (J.G.); (Y.L.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
| |
Collapse
|