1
|
Annamalai KK, Selvaraj B, Subramanian K, Binsuwaidan R, Saeed M. Antibiofilm and antivirulence activity of selenium nanoparticles synthesized from cell-free extract of moderately halophilic bacteria. Microb Pathog 2024; 193:106740. [PMID: 38897360 DOI: 10.1016/j.micpath.2024.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/27/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Biofilm-forming microbes can pose a major health risk that is difficult to combat. Nanotechnology, on the other hand, represents a novel technique for combating and eliminating biofilm-forming microbes. In this study, the selenium nanoparticles (SeNPs) were biosynthesized from moderate halophilic bacteria isolated from Pichavaram mangrove sediments. The bacterial strain S8 was found to be efficient for SeNPs synthesis and hence identified by 16s r RNA sequencing as Shewanella sp. In UV- spectral analysis the SeNPs displayed a peak at 320 nm due to surface plasmon resonance (SPR). The cell-free extract of Shewanella sp. and SeNPs indicates that the various functional groups in the cell-free extract were mainly involved in the synthesis and stabilization of SeNPs. The SeNPs had a spherical form with average diameter of 49 ± 0.01 nm, according to the FESEM analysis. The EDX shows the distinctive peaks of selenium at 1.37, 11.22.12.49 Kev. In the agar well diffusion method, the SeNPs show inhibitory activity against all the test pathogens with the highest activity noted against P.aeruginosa with a zone of inhibition of 22.7 ± 0.3 mm. The minimal inhibitory concentration (MIC) value of 80 μg/ml, minimal bactericidal concentration (MBC) of 160 μg/ml, and susceptibility constant of 0.043 μg/ml show that SeNPs highly effective against P.aeruginosa. The Sub-MIC value of SeNPs of 20 μg/ml was found to inhibit P.aeruginosa biofilm by 85% as compared to the control. Further, the anti-virulence properties viz., pyocyanin, pyoverdine, hemolytic, and protease inhibition revealed the synthesized SeNPs from halophilic bacteria control the pathogenicity of P.aeruginosa.
Collapse
Affiliation(s)
- Kishore Kumar Annamalai
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Bharathi Selvaraj
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600007, Tamil Nadu, India.
| | - Kumaran Subramanian
- PG and Research Department of Microbiology, Sri Sankara Arts and Science College, Kancheepuram, 631561, Tamil Nadu, India
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
2
|
Khedr WE, Shaheen MNF, Elmahdy EM, El-Bendary MA, Hamed AA, Mohamedin AH. Silver and gold nanoparticles: Eco-friendly synthesis, antibiofilm, antiviral, and anticancer bioactivities. Prep Biochem Biotechnol 2024; 54:470-482. [PMID: 37610377 DOI: 10.1080/10826068.2023.2248238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
For the first time in this study, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were green synthesized by the cost-effective and eco-friendly procedure using Cotton seed meal and Fodder yeast extracts. The biosynthesized NPs were characterized by UV-Vis spectroscopy, dynamic light scattering analysis (DLS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and fourier-transform infrared (FTIR) spectroscopy. Furthermore, the biosynthesized NPs were tested in vitro against biofilm formation by some pathogenic negative bacteria (Escherichia coli, Proteus mirabilis, Klebsiella sp., Salmonella sp., and Pseudomonas aeruginosa) and negative bacteria (staphylococcus aureus) as well as against human denovirus serotype 5 (HAdV-5) and anticancer activity using HepG2 hepatocarcinoma cells. UV-Vis absorption spectra of reaction mixture of AgNPs and AuNPs exhibited maximum absorbance at 440 nm and 540 nm, respectively. This finding was confirmed by DLS measurements that the highest intensity of the AgNPs and AuNPs were 84 nm and 73.9 nm, respectively. FTIR measurements identified some functional groups detected in Cotton seed meal and Fodder yeast extracts that could be responsible for reduction of silver and gold ions to metallic silver and gold. The morphologies and particle size of AgNPs and AuNPs were confirmed by the TEM and SAED pattern analysis. Biosynthesized AgNPs and AuNPs showed good inhibitory effects against biofilms produced by Escherichia coli, Proteus mirabilis, Klebsiella sp., Salmonella sp., Pseudomonas aeruginosa, and Staphylococcus aureus. In addition, they showed anticancer activities against hepatocellular carcinoma (HepG-2) and antiviral activity against human adenovirus serotype 5 infection in vitro. Finally, the results of this study is expected to be extremely helpful to nano-biotechnology, pharmaceutical, and food packing applications through developing antimicrobial and/or an anticancer drugs from ecofriendly and inexpensive nanoparticles with multi-potentiality.
Collapse
Affiliation(s)
| | - Mohamed N F Shaheen
- Environmental Virology Laboratory, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Elmahdy M Elmahdy
- Environmental Virology Laboratory, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Magda A El-Bendary
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed A Hamed
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | | |
Collapse
|
3
|
Samal S, Misra M, Rangarajan V, Chattopadhyay S. Antimicrobial Nanoparticles Mediated Prevention and Control of Membrane Biofouling in Water and Wastewater Treatment: Current Trends and Future Perspectives. Appl Biochem Biotechnol 2023; 195:5458-5477. [PMID: 37093532 DOI: 10.1007/s12010-023-04497-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Global water scarcity and water pollution necessitate wastewater reclamation for further use. As an alternative to conventional techniques, membrane technology is extensively used as an advanced method for water purification and wastewater treatment due to its selectivity, permeability, and efficient removal of pollutants. However, microbial biofouling is a major threat that deteriorates membrane performance and imparts operational challenges. It is a natural phenomenon caused by the undesirable colonization of microbes on membrane surfaces. The economic penalties associated with this menace are enormous. The traditional preventive measures are dominated by biocides, toxic chemicals, cleaners and antifouling surfaces, which are costly and often cause secondary pollution. Recent focus is thus being directed to promote inputs from nanotechnology to control and mitigate this major threat. Different anti-microbial nanomaterials can be effectively used to prevent the adhesion of microbes onto the membrane surfaces and eliminate microbial biofilms, to provide an economical and eco-friendly solution to biofouling. This review addresses the formation of microbial biofilms and biofouling in membrane operations. The potential of nanocomposite membranes in alleviating this problem and the challenges in commercialization are discussed. The antifouling mechanisms are also highlighted, which are not widely elucidated.
Collapse
Affiliation(s)
- Subhranshu Samal
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, Goa, India
| | - Modhurima Misra
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Vivek Rangarajan
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, Goa, India
| | - Soham Chattopadhyay
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
4
|
Bhadra S, Chettri D, Kumar Verma A. Biosurfactants: Secondary Metabolites Involved in the Process of Bioremediation and Biofilm Removal. Appl Biochem Biotechnol 2023; 195:5541-5567. [PMID: 35579742 DOI: 10.1007/s12010-022-03951-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022]
Abstract
The search for environmentally friendly methods to remove persistent substances such as organic pollutants and sessile communities such as biofilms that severely affect the environment and human health resulted in biosurfactant discovery. Owing to their low level of toxicity and high biodegradability, biosurfactants are increasingly preferred to be used for removal of pollutants from nature. These amphipathic molecules can be synthesized inexpensively, employing cheap substrates such as agricultural and industrial wastes. Recent progress has been made in identifying various biosurfactants that can be used to remove organic pollutants and harmful microbial aggregates, as well as novel microbial strains that produce these surface-active molecules to survive in a hydrocarbon-rich environment. This review focuses on the identification and understanding the role of biosurfactants and the microorganisms involved in the removal of biofilms and remediation of xenobiotics and various types of hydrocarbons such as crude oil, aromatic hydrocarbons, n-alkanes, aliphatic hydrocarbons, asphaltenes, naphthenes, and other petroleum products. This property of biosurfactant is very important as biofilms are of great concern due to their impact on the environment, public health, and industries worldwide. This work also includes several advanced molecular methods that can be used to enhance the production of biosurfactants by the microorganisms studied.
Collapse
Affiliation(s)
- Sushruta Bhadra
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
5
|
Ghosh S, Lahiri D, Nag M, Dey A, Sarkar T, Biswas R, Dutta B, Mukherjee D, Pati S, Pattanaik S, Ray RR. Analysis of Antibiofilm Activities of Bioactive Compounds from Honeyweed (Leonurus sibiricus) Against P. aeruginosa: an In Vitro and In Silico Approach. Appl Biochem Biotechnol 2023; 195:5312-5328. [PMID: 34989967 DOI: 10.1007/s12010-021-03797-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/21/2022]
Abstract
Leonurus sibiricus (Red verticilla, honeyweed) is a type of herbaceous plant predominantly found in Asian subcontinents as weed in crop fields and is widely used for treating diabetes, bronchitis, and menstrual irregularities. However, there is a dearth of study in the application of the plant phytocompounds for treating biofilm-associated chronic infections. The bioactive compounds mainly comprise of tri-terpenes, di-terpenes, phenolic acid, and flavonoids which may have potential role as antimicrobial and antibiofilm agents. Acute and chronic infection causing microbes usually form biofilm and develop virulence factors and antibiotic resistance through quorum sensing (QS). In this study, the bioactive compounds leosibirin, sibiricinone A, leosibirone A, leonotin, quercetin, lavandulifolioside, and myricetin were identified using GC-MS analysis. These were used for analyzing the antibiofilm and anti-quorum sensing activities (rhamnolipid, AHL assay, swarming motility assay) against the biofilm formed by Pseudomonas aeruginosa, the most significant nosocomial disease-causing bacteria. The compounds were able to bring about maximum inhibition in biofilm formation and QS. Although the antibiofilm activity of the phytoextract was found to be higher than that of individual phytocompounds at a concentration of 250 µg/mL, quercetin and myricetin showed highest antibiofilm activity against Pseudomonas aeruginosa, respectively, at MIC values of 135 µg/mL and 150 µg/mL against P aeruginosa. FT-IR study also revealed that the active ingredients were able to bring about the destruction of exopolysaccharides (EPS). These observations were further validated by molecular docking interactions that showed the active ingredients inhibit the functioning of QS sensing proteins by binding with them. It was observed that myricetin showed better interactions with the QS proteins of P. aeruginosa. Myricetin and quercetin show considerable inhibition of biofilm in comparison to the phytocompounds. Thus, the present study suggests that the active compounds from L. sibiricus can be used as an alternate strategy in inhibiting the biofilm formed by pathogenic organisms.
Collapse
Affiliation(s)
- Sreejita Ghosh
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, West Bengal, India
| | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Tanmay Sarkar
- Department of Food Technology and Bio-Chemical Engineering, Jadavpur University, Kolkata, 700032, India
- Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, 732102, India
| | - Riya Biswas
- Department of Biotechnology, University of Engineering & Management, Kolkata, West Bengal, India
| | - Bandita Dutta
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Dipro Mukherjee
- Department of Biotechnology, University of Engineering & Management, Kolkata, West Bengal, India
| | - Siddhartha Pati
- SIAN Institute, Association for Biodiversity Conservation and Research (ABC), 756001, Odisha, India
- Department of Biotechnology, Academy of Management and Information Technology, Khordha, 752057, Odisha, India
| | - Smaranika Pattanaik
- Department of Biotechnology & Bioinformatics, Sambalpur University, Odisha, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India.
| |
Collapse
|
6
|
Sans-Serramitjana E, Obreque M, Muñoz F, Zaror C, Mora MDLL, Viñas M, Betancourt P. Antimicrobial Activity of Selenium Nanoparticles (SeNPs) against Potentially Pathogenic Oral Microorganisms: A Scoping Review. Pharmaceutics 2023; 15:2253. [PMID: 37765222 PMCID: PMC10537110 DOI: 10.3390/pharmaceutics15092253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Biofilms are responsible for the most prevalent oral infections such as caries, periodontal disease, and pulp and periapical lesions, which affect the quality of life of people. Antibiotics have been widely used to treat these conditions as therapeutic and prophylactic compounds. However, due to the emergence of microbial resistance to antibiotics, there is an urgent need to develop and evaluate new antimicrobial agents. This scoping review offers an extensive and detailed synthesis of the potential role of selenium nanoparticles (SeNPs) in combating oral pathogens responsible for causing infectious diseases. A systematic search was conducted up until May 2022, encompassing the MEDLINE, Embase, Scopus, and Lilacs databases. We included studies focused on evaluating the antimicrobial efficacy of SeNPs on planktonic and biofilm forms and their side effects in in vitro studies. The selection process and data extraction were carried out by two researchers independently. A qualitative synthesis of the results was performed. A total of twenty-two articles were considered eligible for this scoping review. Most of the studies reported relevant antimicrobial efficacy against C. albicans, S. mutans, E. faecalis, and P. gingivalis, as well as effective antioxidant activity and limited toxicity. Further research is mandatory to critically assess the effectiveness of this alternative treatment in ex vivo and in vivo settings, with detailed information about SeNPs concentrations employed, their physicochemical properties, and the experimental conditions to provide enough evidence to address the construction and development of well-designed and safe protocols.
Collapse
Affiliation(s)
- Eulàlia Sans-Serramitjana
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Macarena Obreque
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
| | - Fernanda Muñoz
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
| | - Carlos Zaror
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, Universidad de La Frontera, Manuel Montt #112, Temuco 4811230, Chile;
- Center for Research in Epidemiology, Economics and Oral Public Health (CIEESPO), Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| | - María de La Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Miguel Viñas
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, 08907 Barcelona, Spain;
| | - Pablo Betancourt
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
- Department of Integral Adultos, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
7
|
Ghalkhani M, Teymourinia H, Ebrahimi F, Irannejad N, Karimi-Maleh H, Karaman C, Karimi F, Dragoi EN, Lichtfouse E, Singh J. Engineering and application of polysaccharides and proteins-based nanobiocatalysts in the recovery of toxic metals, phosphorous, and ammonia from wastewater: A review. Int J Biol Macromol 2023; 242:124585. [PMID: 37105252 DOI: 10.1016/j.ijbiomac.2023.124585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Global waste production is anticipated reach to 2.59 billion tons in 2030, thus accentuating issues of environmental pollution and health security. 37 % of waste is landfilled, 33 % is discharged or burned in open areas, and only 13.5 % is recycled, which makes waste management poorly efficient in the context of the circular economy. There is therefore a need for methods to recycle waste into valuable materials through resource recovery process. Progress in the field of recycling is strongly dependent on the development of efficient, stable, and reusable, yet inexpensive catalysts. In this case, a growing attention has been paid to development and application of nanobiocatalysts with promising features. The main purpose of this review paper is to: (i) introduce nanobiomaterials and describe their effective role in the preparation of functional nanobiocatalysts for the recourse recovery aims; (ii) provide production methods and the efficiency improvement of nanobaiocatalysts; (iii) give comprehensive description of valued resource recovery for reducing toxic chemicals from the contaminated environment; (iv) describe various technologies for the valued resource recovery; (v) state the limitation of the valued resource recovery; (vi) and finally economic importance and current scenario of nanobiocatalysts strategies applicable for the resource recovery processes.
Collapse
Affiliation(s)
- Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran.
| | | | - Fatemeh Ebrahimi
- Thin Layer and Nanotechnology Laboratory, Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Neda Irannejad
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, Akdeniz University, Antalya 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld. D. Mangeron no 73, 700050, Iasi, Romania
| | - Eric Lichtfouse
- Tate Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China.
| | - Jagpreet Singh
- Department of Chemical Engineering, University Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| |
Collapse
|
8
|
Zeng J, Gu C, Geng X, Lin K, Xie Y, Chen X. Combined photothermal and sonodynamic therapy using a 2D black phosphorus nanosheets loaded coating for efficient bacterial inhibition and bone-implant integration. Biomaterials 2023; 297:122122. [PMID: 37080119 DOI: 10.1016/j.biomaterials.2023.122122] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
Surgical site infection (SSI) remains a major threat for implant failure in orthopedics. Herein, we report a dual-functional coating on Ti implants (named Ti/PDA/BP) with the integration of two-dimensional (2D) photo-sono sensitive black phosphorus nanosheets (BPNSs) and polydopamine (PDA) for efficient bacterial inhibition and bone-implant integration. For the first time, we employ BPNSs as generators of reactive radicals (ROS) under ultrasound (US) stimuli for implant associated infection. Additionally, the application of PDA improves the stability of BPNSs, the biocompatibility and photothermal performance of this hybrid coating. The as-prepared Ti/PDA/BP coating exhibits superior biocompatibility, bioactivity, photothermal and sonodynamic conversion abilities. Owing to the synergistic effect of hyperthermia and ·OH, Ti/PDA/BP damages the membrane and antioxidant system of Staphylococcus aureus, reaching a high antibacterial activity of 96.6% in vitro and 97.3% in vivo with rapid 10 min NIR irradiation and 20 min US treatment. In addition, we firstly unveil the significant effect of Ti/PDA/BP-based sonodynamic therapy (SDT) on bacterial membrane and oxidative stress at the transcriptome level. Moreover, the Ti/PDA/BP coating remarkably promotes osteogenesis in vitro and bone-implant osseointegration in vivo. Overall, development of Ti/PDA/BP bioactive coating provides a new strategy for combating the implant associated infection.
Collapse
Affiliation(s)
- Junkai Zeng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, PR China
| | - Changjiang Gu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, PR China
| | - Xiangwu Geng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, PR China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, PR China.
| | - Youzhuan Xie
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Xiongsheng Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, PR China; Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
9
|
Chowdhury MA, Hossain N, Mostofa MG, Mia MR, Tushar M, Rana MM, Hossain MH. Green synthesis and characterization of zirconium nanoparticlefor dental implant applications. Heliyon 2022; 9:e12711. [PMID: 36685390 PMCID: PMC9850058 DOI: 10.1016/j.heliyon.2022.e12711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/26/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Green synthesis is a promising and cost-effective technique to synthesize nanoparticles from plant extract. The present study shows the green synthesis of zirconium nanoparticles using the extract of ginger, garlic, and zirconium nitride. The obtained nanoparticles were studied for potential dental implant applications. The synthesized nanoparticles were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-Ray Spectroscopy (EDX), X-Ray diffraction analysis (XRD), and antibacterial analysis. FTIR analysis confirmed the presence of various organic compounds in the synthesized nanoparticles. The synthesized nanoparticles were spherical, triangular, and irregular, with varying sizes confirmed by FESEM analysis. The nanoparticles synthesized from the combination of garlic and ginger, and zirconium exhibited potent antibacterial activity against S. aureus. Anti-biofilm, anti-microbial activity, biointegration formation, and cell mechanism survival are also mentioned. Thus, the synthesized nanoparticles can be a good candidate for a dental implant because of their excellent antimicrobial properties.
Collapse
Affiliation(s)
- Mohammad Asaduzzaman Chowdhury
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh
| | - Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh,Corresponding author.
| | - Md. Golam Mostofa
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh
| | - Md. Riyad Mia
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh
| | - Md. Tushar
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh
| | - Md. Masud Rana
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology, Gazipur, Bangladesh
| | - Md. Helal Hossain
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology, Gazipur, Bangladesh
| |
Collapse
|
10
|
Shad S, Lynch I, Shah SWH, Bashir N. Remediation of Water Using a Nanofabricated Cellulose Membrane Embedded with Silver Nanoparticles. MEMBRANES 2022; 12:1035. [PMID: 36363590 PMCID: PMC9699521 DOI: 10.3390/membranes12111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The removal of pesticide pollution is imperative, because of their high environmental load and persistence, and their potential for bioaccumulation in, and toxicity to the environment. Most pesticides are found to be toxic even at trace levels. AgNPs can be effectively used for the adsorption of pesticides, and the incorporation of the AgNPs onto a support polymeric membrane enhances their effectiveness and reduces the potential unwanted consequences of intentionally adding free nanoparticles to the environment. Here, silver nanoparticles (AgNPs) were synthesized using a reliable, eco-friendly, and one-step "green" method, by reacting Mentha Piperita (mint) extract with AgNO3 aqueous solution at 60 °C in a microwave. The resulting high surface area nanoparticles are both economic and effective environmental remediation agents, playing a promising role in the elimination of aquatic pesticide pollution. Embedding the nanoparticles into a cellulose membrane at a low concentration (0.1 g) of AgNPs was shown to result in effectively adsorption of representative pesticides (Cypermethrin, Paraquat, and Cartap) within 60 min, while increasing the concentration of nanoparticles incorporated into the membrane further enhanced the removal of the exemplar pesticides from water. The high adsorption capacity makes the cellulose-AgNPs membrane an excellent substrate for the remediation of pesticide-polluted water.
Collapse
Affiliation(s)
- Salma Shad
- Department of Chemistry, Faculty of Natural Science, The University of Haripur, Haripur 22620, Pakistan
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | - Nadia Bashir
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| |
Collapse
|
11
|
Roy AS, Sharma A, Thapa BS, Pandit S, Lahiri D, Nag M, Sarkar T, Pati S, Ray RR, Shariati MA, Wilairatana P, Mubarak MS. Microbiomics for enhancing electron transfer in an electrochemical system. Front Microbiol 2022; 13:868220. [PMID: 35966693 PMCID: PMC9372394 DOI: 10.3389/fmicb.2022.868220] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
In microbial electrochemical systems, microorganisms catalyze chemical reactions converting chemical energy present in organic and inorganic molecules into electrical energy. The concept of microbial electrochemistry has been gaining tremendous attention for the past two decades, mainly due to its numerous applications. This technology offers a wide range of applications in areas such as the environment, industries, and sensors. The biocatalysts governing the reactions could be cell secretion, cell component, or a whole cell. The electroactive bacteria can interact with insoluble materials such as electrodes for exchanging electrons through colonization and biofilm formation. Though biofilm formation is one of the major modes for extracellular electron transfer with the electrode, there are other few mechanisms through which the process can occur. Apart from biofilm formation electron exchange can take place through flavins, cytochromes, cell surface appendages, and other metabolites. The present article targets the various mechanisms of electron exchange for microbiome-induced electron transfer activity, proteins, and secretory molecules involved in the electron transfer. This review also focuses on various proteomics and genetics strategies implemented and developed to enhance the exo-electron transfer process in electroactive bacteria. Recent progress and reports on synthetic biology and genetic engineering in exploring the direct and indirect electron transfer phenomenon have also been emphasized.
Collapse
Affiliation(s)
- Ayush Singha Roy
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, India
| | - Aparna Sharma
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Bhim Sen Thapa
- Department of Biological Sciences, WEHR Life Sciences, Marquette University, Milwaukee, WI, United States
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
- *Correspondence: Soumya Pandit,
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering and Management, Kolkata, WB, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering and Management, Kolkata, WB, India
| | - Tanmay Sarkar
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, WB, India
| | - Siddhartha Pati
- NatNov Bioscience Private Ltd., Balasore, India
- Association for Biodiversity Conservation and Research Balasore (ABC), Balasore, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, WB, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Polrat Wilairatana,
| | - Mohammad S. Mubarak
- Department of Chemistry, The University of Jordan, Amman, Jordan
- Mohammad S. Mubarak,
| |
Collapse
|
12
|
Microbe-fabricated nanoparticles as potent biomaterials for efficient food preservation. Int J Food Microbiol 2022; 379:109833. [PMID: 35914405 DOI: 10.1016/j.ijfoodmicro.2022.109833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/26/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
Abstract
In recent years, cutting-edge nanotechnology research has revolutionized several facets of the food business, including food processing, packaging, transportation, preservation, and functioning. Nanotechnology has beginning to loom large in the food business as the industry's demand for biogenic nanomaterial grows. The intracellular and extracellular synthesis of metal, metal oxide, and other essential NPs has recently been explored in a variety of microorganisms, including bacteria, actinomycetes, fungi, yeasts, microalgae, and viruses. These microbes produce a variety extracellular material, exopolysaccharides, enzymes, and secondary metabolites which play key roles in synthesizing as well as stabilizing the nanoparticle (NPs). Furthermore, genetic engineering techniques can help them to improve their capacity to generate NPs more efficiently. As a result, using microorganisms to manufacture NPs is unique and has a promising future. Microbial-mediated synthesis of NPs has lately been popular as a more environmentally friendly alternative to physical and chemical methods of nanomaterial synthesis, which require higher prices, more energy consumption, and more complex reaction conditions, as well as a potentially dangerous environmental impact. It is critical to consider regulatory measures implemented at all stages of the process, from production through refining, packaging, preservation, and storage, when producing bionanomaterials derived from culturable microbes for efficient food preservation. The current review discusses the synthesis, mechanism of action, and possible food preservation uses of microbial mediated NPs, which can assist to minimize food deterioration from the inside out while also ensuring that food is safe and free of contaminants. Despite the numerous benefits, there are looming debates concerning their usage in food items, particularly regarding its aggregation in human bodies and other risks to the environment. Other applications and impacts of these microbe-fabricated NPs in the context of future food preservation prospects connected with regulatory problems and potential hazards are highlighted.
Collapse
|
13
|
Di Domenico EG, Oliva A, Guembe M. The Current Knowledge on the Pathogenesis of Tissue and Medical Device-Related Biofilm Infections. Microorganisms 2022; 10:microorganisms10071259. [PMID: 35888978 PMCID: PMC9322301 DOI: 10.3390/microorganisms10071259] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Biofilm is the trigger for the majority of infections caused by the ability of microorganisms to adhere to tissues and medical devices. Microbial cells embedded in the biofilm matrix are highly tolerant to antimicrobials and escape the host immune system. Thus, the refractory nature of biofilm-related infections (BRIs) still represents a great challenge for physicians and is a serious health threat worldwide. Despite its importance, the microbiological diagnosis of a BRI is still difficult and not routinely assessed in clinical microbiology. Moreover, biofilm bacteria are up to 100–1000 times less susceptible to antibiotics than their planktonic counterpart. Consequently, conventional antibiograms might not be representative of the bacterial drug susceptibility in vivo. The timely recognition of a BRI is a crucial step to directing the most appropriate biofilm-targeted antimicrobial strategy.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - María Guembe
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Correspondence: ; Tel.: +34-914-269-595
| |
Collapse
|
14
|
Del Genio V, Bellavita R, Falanga A, Hervé-Aubert K, Chourpa I, Galdiero S. Peptides to Overcome the Limitations of Current Anticancer and Antimicrobial Nanotherapies. Pharmaceutics 2022; 14:1235. [PMID: 35745807 PMCID: PMC9230615 DOI: 10.3390/pharmaceutics14061235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Biomedical research devotes a huge effort to the development of efficient non-viral nanovectors (NV) to improve the effectiveness of standard therapies. NVs should be stable, sustainable and biocompatible and enable controlled and targeted delivery of drugs. With the aim to foster the advancements of such devices, this review reports some recent results applicable to treat two types of pathologies, cancer and microbial infections, aiming to provide guidance in the overall design of personalized nanomedicines and highlight the key role played by peptides in this field. Additionally, future challenges and potential perspectives are illustrated, in the hope of accelerating the translational advances of nanomedicine.
Collapse
Affiliation(s)
- Valentina Del Genio
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Rosa Bellavita
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples “Federico II”, Via Università 100, 80055 Naples, Italy;
| | - Katel Hervé-Aubert
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Igor Chourpa
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
| |
Collapse
|
15
|
Wang N, Ma Y, Shi H, Song Y, Guo S, Yang S. Mg-, Zn-, and Fe-Based Alloys With Antibacterial Properties as Orthopedic Implant Materials. Front Bioeng Biotechnol 2022; 10:888084. [PMID: 35677296 PMCID: PMC9168471 DOI: 10.3389/fbioe.2022.888084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Implant-associated infection (IAI) is one of the major challenges in orthopedic surgery. The development of implants with inherent antibacterial properties is an effective strategy to resolve this issue. In recent years, biodegradable alloy materials have received considerable attention because of their superior comprehensive performance in the field of orthopedic implants. Studies on biodegradable alloy orthopedic implants with antibacterial properties have gradually increased. This review summarizes the recent advances in biodegradable magnesium- (Mg-), iron- (Fe-), and zinc- (Zn-) based alloys with antibacterial properties as orthopedic implant materials. The antibacterial mechanisms of these alloy materials are also outlined, thus providing more basis and insights on the design and application of biodegradable alloys with antibacterial properties as orthopedic implants.
Collapse
Affiliation(s)
- Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yutong Ma
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Shu Guo, ; Shude Yang,
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology and Department of Oral Pathology, School of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Shu Guo, ; Shude Yang,
| |
Collapse
|
16
|
Polymeric Coatings and Antimicrobial Peptides as Efficient Systems for Treating Implantable Medical Devices Associated-Infections. Polymers (Basel) 2022; 14:polym14081611. [PMID: 35458361 PMCID: PMC9024559 DOI: 10.3390/polym14081611] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Many infections are associated with the use of implantable medical devices. The excessive utilization of antibiotic treatment has resulted in the development of antimicrobial resistance. Consequently, scientists have recently focused on conceiving new ways for treating infections with a longer duration of action and minimum environmental toxicity. One approach in infection control is based on the development of antimicrobial coatings based on polymers and antimicrobial peptides, also termed as “natural antibiotics”.
Collapse
|
17
|
Antibiofilm Potential of Alpha-Amylase from a Marine Bacterium, Pantoea agglomerans. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:7480382. [PMID: 35462682 PMCID: PMC9033359 DOI: 10.1155/2022/7480382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022]
Abstract
Bacterial biofilms are a big menace to industries and the environment and also in the health sector, accumulation of which is a major challenge. Despite intensive efforts to curb this issue, a definitive solution is yet to be achieved. Enzyme-templated disruption of the extracellular matrix of biofilm and its control and elimination are emerging as an efficient and greener strategy. The study describes the antibiofilm potential of alpha-amylase from the marine microorganism Pantoea agglomerans PCI05, against food-borne pathogens. Amylase exhibited stability in a wide pH range and retained 50% of its activity at temperatures as high as 100°C. Thermal analysis of the enzyme produced showed thermal stability, up to 130°C. From these findings, it can be envisaged that the alpha-amylase produced from P. agglomerans can be used for starch liquefaction; it was also evaluated for antibiofilm activity. Amylase from this marine bacterium was found to efficiently disrupt the preformed biofilms of food-borne pathogens such as Bacillus cereus, Serratia marcescens, Vibrio parahaemolyticus, Listeria monocytogenes, and Salmonella enterica enterica serotype Typhi based on the value of biofilm inhibitory concentrations.
Collapse
|
18
|
Chopra H, Bibi S, Singh I, Hasan MM, Khan MS, Yousafi Q, Baig AA, Rahman MM, Islam F, Emran TB, Cavalu S. Green Metallic Nanoparticles: Biosynthesis to Applications. Front Bioeng Biotechnol 2022; 10:874742. [PMID: 35464722 PMCID: PMC9019488 DOI: 10.3389/fbioe.2022.874742] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/22/2022] [Indexed: 12/14/2022] Open
Abstract
Current advancements in nanotechnology and nanoscience have resulted in new nanomaterials, which may pose health and environmental risks. Furthermore, several researchers are working to optimize ecologically friendly procedures for creating metal and metal oxide nanoparticles. The primary goal is to decrease the adverse effects of synthetic processes, their accompanying chemicals, and the resulting complexes. Utilizing various biomaterials for nanoparticle preparation is a beneficial approach in green nanotechnology. Furthermore, using the biological qualities of nature through a variety of activities is an excellent way to achieve this goal. Algae, plants, bacteria, and fungus have been employed to make energy-efficient, low-cost, and nontoxic metallic nanoparticles in the last few decades. Despite the environmental advantages of using green chemistry-based biological synthesis over traditional methods as discussed in this article, there are some unresolved issues such as particle size and shape consistency, reproducibility of the synthesis process, and understanding of the mechanisms involved in producing metallic nanoparticles via biological entities. Consequently, there is a need for further research to analyze and comprehend the real biological synthesis-dependent processes. This is currently an untapped hot research topic that required more investment to properly leverage the green manufacturing of metallic nanoparticles through living entities. The review covers such green methods of synthesizing nanoparticles and their utilization in the scientific world.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Muhammad Saad Khan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Qudsia Yousafi
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Atif Amin Baig
- Unit of Biochemistry, Faculty of Medicine, University Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
19
|
Nishakavya S, Girigoswami A, Gopikrishna A, Deepa R, Divya A, Ajith S, Girigoswami K. Size Attenuated Copper Doped Zirconia Nanoparticles Enhances In Vitro Antimicrobial Properties. Appl Biochem Biotechnol 2022; 194:3435-3452. [PMID: 35366183 DOI: 10.1007/s12010-022-03875-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
Biofilm formation hinders the activity of antimicrobial drugs at the site of infections and any agent that can act on both Gram-positive and Gram-negative bacteria by inhibiting the bacterial growth and rupturing the biofilm is needed to manage infection. In the present study, we have synthesized zirconia nanoparticles (ZrO2 NPs) and copper doped zirconia nanoparticles (Cu-ZrO2 NPs) and characterized them using dynamic light scattering, X-ray diffractometry, and scanning electron microscopy (SEM). The size of the Cu-ZrO2 NPs drastically reduced compared to ZrO2 NPs, and the antimicrobial activity was studied against Gram-positive bacteria (Lactobacillus sp.) and Gram-negative bacteria (Pseudomonas aeruginosa), respectively. The synthesized Cu-ZrO2 NPs showed superior inhibitory action against Lactobacillus sp. compared to ZrO2 NPs, due to the negatively charged cell wall of Lactobacillus sp., which could attract readily the positively charged Cu-ZrO2 NPs, thereby inhibiting its activity. The biocompatibility was tested using XTT assay in FL cells, and the results demonstrated that Cu-ZrO2 NPs were nontoxic to mammalian cells. Hence, it could be proposed that the synthesized Cu-ZrO2 NPs possess possible biomedical applications and can be used as antibacterial agents without causing toxicity in mammalian cells.
Collapse
Affiliation(s)
- S Nishakavya
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - A Gopikrishna
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - R Deepa
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - A Divya
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - S Ajith
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India.
| |
Collapse
|
20
|
He R, Zhang Z, Xu L, Chen W, Zhang M, Zhong Q, Chen H, Chen W. Antibacterial mechanism of linalool emulsion against Pseudomonas aeruginosa and its application to cold fresh beef. World J Microbiol Biotechnol 2022; 38:56. [PMID: 35165818 DOI: 10.1007/s11274-022-03233-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/10/2022] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is the dominant spoilage bacterium in cold fresh beef. The current strategy is undertaken to overcome the low water solubility of linalool by encapsulating linalool into emulsions. The results of field emission scanning electron microscopy and particle size distribution revealed that the appearance of the bacterial cells was severely disrupted after exposure to linalool emulsion (LE) with an minimum inhibitory concentration (MIC) of 1.5 mL/L. Probes combined with fluorescence spectroscopy were performed to detect cell membrane permeability, while intracellular components (protein and ion leakage) and crystal violet staining were further measured to characterize cell membrane integrity and biofilm formation ability. The results confirmed that LE could destroy the structure of the cell membrane, thereby leading to the leakage of intracellular material and effective removal of biofilms. Molecular docking confirmed that LE can interact with the flagellar cap protein (FliD) and DNA of P. aeruginosa, inhibiting biofilm formation and causing genetic damage. Furthermore, the results of respiratory metabolism and reactive oxygen species (ROS) accumulation revealed that LE could significantly inhibit the metabolic activity of P. aeruginosa and induce oxidative stress. In particular, the inhibition rate of LE on P. aeruginosa was 23.03% and inhibited mainly the tricarboxylic acid cycle (TCA). Finally, LE was applied to preserve cold fresh beef, and the results showed that LE could effectively inhibit the activity of P. aeruginosa and delay the quality change of cold fresh beef during the storage period. These results are of great significance to developing natural preservatives and extending the shelf life of cold fresh beef.
Collapse
Affiliation(s)
- Rongrong He
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Zhengke Zhang
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Lilan Xu
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Weijun Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Ming Zhang
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Qiuping Zhong
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Haiming Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China.
| | - Wenxue Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China. .,Spice and Beverage Research Institute, Chinese Academy of Tropical Agriculture Science, Wanning, Hainan, 571533, People's Republic of China.
| |
Collapse
|
21
|
Panichikkal J, Jose A, Sreekumaran S, Ashokan AK, Baby CS, Krishnankutty RE. Biofilm and Biocontrol Modulation of Paenibacillus sp. CCB36 by Supplementation with Zinc Oxide Nanoparticles and Chitosan Nanoparticles. Appl Biochem Biotechnol 2021; 194:1606-1620. [PMID: 34822058 DOI: 10.1007/s12010-021-03710-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/08/2021] [Indexed: 11/28/2022]
Abstract
Endophytic bacteria with multi-trait plant beneficial features have applications to enhance agricultural productivity by supporting the plant growth, yield, and disease resistance. In this study, Paenibacillus sp. CCB36 was isolated from the rhizome of Curcuma caesia Roxb., and its biofilm formation and antifungal properties have been evaluated in the presence of nanoparticles. Chitosan nanoparticles (CNPs) were synthesized and characterized by UV-visible spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, high-resolution-transmission electron microscopic (HR-TEM) analysis, scanning electron microscopic (SEM) analysis, and dynamic light scattering (DLS). The effect of zinc oxide nanoparticles (ZnONPs) and CNPs on biofilm formation of Paenibacillus sp. CCB36 was evaluated by tissue culture plate assay. ZnONPs reduced its biofilm formation and was found to get modulated in the presence of CNPs as revealed by atomic force microscopy (AFM). Hence, CNPs were selected for further studies. Interestingly, biocontrol property of Paenibacillus sp. CCB36 against Rhizoctonia solani was also found to get enhanced when supplemented with chitosan nanoparticles. The results of the study indicate application of nanoparticles to improve colonization and active functioning of endophytic bacteria which can have significant application in agriculture.
Collapse
Affiliation(s)
- Jishma Panichikkal
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, India, 686 560
| | - Ashitha Jose
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, India, 686 560
| | - Sreejith Sreekumaran
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, India, 686 560
| | | | - Cimmiya Susan Baby
- Department of Biosciences, M.E.S. College, Marampally (PO), Aluva, Kerala, India, 683 107
| | | |
Collapse
|
22
|
Current strategies in inhibiting biofilm formation for combating urinary tract infections: Special focus on peptides, nano-particles and phytochemicals. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Formation and development of biofilm- an alarming concern in food safety perspectives. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics. Molecules 2021; 26:molecules26216389. [PMID: 34770796 PMCID: PMC8586976 DOI: 10.3390/molecules26216389] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Gold nanoparticles (AuNPs) have been widely explored and are well-known for their medical applications. Chemical and physical synthesis methods are a way to make AuNPs. In any case, the hunt for other more ecologically friendly and cost-effective large-scale technologies, such as environmentally friendly biological processes known as green synthesis, has been gaining interest by worldwide researchers. The international focus on green nanotechnology research has resulted in various nanomaterials being used in environmentally and physiologically acceptable applications. Several advantages over conventional physical and chemical synthesis (simple, one-step approach to synthesize, cost-effectiveness, energy efficiency, and biocompatibility) have drawn scientists’ attention to exploring the green synthesis of AuNPs by exploiting plants’ secondary metabolites. Biogenic approaches, mainly the plant-based synthesis of metal nanoparticles, have been chosen as the ideal strategy due to their environmental and in vivo safety, as well as their ease of synthesis. In this review, we reviewed the use of green synthesized AuNPs in the treatment of cancer by utilizing phytochemicals found in plant extracts. This article reviews plant-based methods for producing AuNPs, characterization methods of synthesized AuNPs, and discusses their physiochemical properties. This study also discusses recent breakthroughs and achievements in using green synthesized AuNPs in cancer treatment and different mechanisms of action, such as reactive oxygen species (ROS), mediated mitochondrial dysfunction and caspase activation, leading to apoptosis, etc., for their anticancer and cytotoxic effects. Understanding the mechanisms underlying AuNPs therapeutic efficacy will aid in developing personalized medicines and treatments for cancer as a potential cancer therapeutic strategy.
Collapse
|
25
|
The Antibiofilm Nanosystems for Improved Infection Inhibition of Microbes in Skin. Molecules 2021; 26:molecules26216392. [PMID: 34770799 PMCID: PMC8587837 DOI: 10.3390/molecules26216392] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Biofilm formation is an important virulence factor for the opportunistic microorganisms that elicit skin infections. The recalcitrant feature of biofilms and their antibiotic tolerance impose a great challenge on the use of conventional therapies. Most antibacterial agents have difficulty penetrating the matrix produced by a biofilm. One novel approach to address these concerns is to prevent or inhibit the formation of biofilms using nanoparticles. The advantages of using nanosystems for antibiofilm applications include high drug loading efficiency, sustained or prolonged drug release, increased drug stability, improved bioavailability, close contact with bacteria, and enhanced accumulation or targeting to biomasses. Topically applied nanoparticles can act as a strategy for enhancing antibiotic delivery into the skin. Various types of nanoparticles, including metal oxide nanoparticles, polymeric nanoparticles, liposomes, and lipid-based nanoparticles, have been employed for topical delivery to treat biofilm infections on the skin. Moreover, nanoparticles can be designed to combine with external stimuli to produce magnetic, photothermal, or photodynamic effects to ablate the biofilm matrix. This study focuses on advanced antibiofilm approaches based on nanomedicine for treating skin infections. We provide in-depth descriptions on how the nanoparticles could effectively eliminate biofilms and any pathogens inside them. We then describe cases of using nanoparticles for antibiofilm treatment of the skin. Most of the studies included in this review were supported by in vivo animal infection models. This article offers an overview of the benefits of nanosystems for treating biofilms grown on the skin.
Collapse
|
26
|
Kirtonia K, Salauddin M, Bharadwaj KK, Pati S, Dey A, Shariati MA, Tilak VK, Kuznetsova E, Sarkar T. Bacteriocin: A new strategic antibiofilm agent in food industries. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Inactivation of Staphylococcus aureus and Escherichia coli Biofilms by Air-Based Atmospheric-Pressure DBD Plasma. Appl Biochem Biotechnol 2021; 193:3641-3650. [PMID: 34347251 DOI: 10.1007/s12010-021-03636-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Air-based atmospheric-pressure plasma is an effective non-thermal method in deactivating various kinds of microbial biofilms with several advantages, including high bactericidal efficiency and low treatment costs. Bacterial biofilm formation is a major determinant in establishment of bacterial infection and also resistance to antibacterial chemotherapy. This study aims to assess the anti-biofilm potential of air-based atmospheric-pressure DBD plasma against Staphylococcus aureus and Escherichia coli biofilms. The biofilms of Staphylococcus aureus and Escherichia coli were exposed to air-based atmospheric-pressure DBD plasma for up to 4 min (control, 30 s, 90 s, 3 min, and 4 min) and their biofilm formation level, viability, and membrane integrity were determined. Based on the results, plasma exposure caused disruption up to 70% and 85% for S. aureus and E. coli biofilms, respectively. The biofilm disruption potential of air-based atmospheric-pressure DBD plasma was confirmed using the scanning electron microscopy (SEM). Besides, based on confocal laser scanning microscopy (CLSM), plasma exposure caused a significant bacterial inactivation and E. coli was found as more susceptible strain than S. aureus. In conclusion, atmospheric-pressure DBD plasma could be considered an efficient non-thermal approach against bacterial pathogenicity by biofilm disruption and thus prevention of infection establishment.
Collapse
|
28
|
Bharadwaj KK, Rabha B, Pati S, Choudhury BK, Sarkar T, Gogoi SK, Kakati N, Baishya D, Kari ZA, Edinur HA. Green Synthesis of Silver Nanoparticles Using Diospyros malabarica Fruit Extract and Assessments of Their Antimicrobial, Anticancer and Catalytic Reduction of 4-Nitrophenol (4-NP). NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1999. [PMID: 34443829 PMCID: PMC8401075 DOI: 10.3390/nano11081999] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022]
Abstract
The green synthesis of silver nanoparticles (AgNPs) has currently been gaining wide applications in the medical field of nanomedicine. Green synthesis is one of the most effective procedures for the production of AgNPs. The Diospyros malabarica tree grown throughout India has been reported to have antioxidant and various therapeutic applications. In the context of this, we have investigated the fruit of Diospyros malabarica for the potential of forming AgNPs and analyzed its antibacterial and anticancer activity. We have developed a rapid, single-step, cost-effective and eco-friendly method for the synthesis of AgNPs using Diospyros malabarica aqueous fruit extract at room temperature. The AgNPs began to form just after the reaction was initiated. The formation and characterization of AgNPs were confirmed by UV-Vis spectrophotometry, XRD, FTIR, DLS, Zeta potential, FESEM, EDX, TEM and photoluminescence (PL) methods. The average size of AgNPs, in accordance with TEM results, was found to be 17.4 nm. The antibacterial activity of the silver nanoparticles against pathogenic microorganism strains of Staphylococcus aureus and Escherichia coli was confirmed by the well diffusion method and was found to inhibit the growth of the bacteria with an average zone of inhibition size of (8.4 ± 0.3 mm and 12.1 ± 0.5 mm) and (6.1 ± 0.7 mm and 13.1 ± 0.5 mm) at 500 and 1000 µg/mL concentrations of AgNPs, respectively. The anticancer effect of the AgNPs was confirmed by MTT assay using the U87-MG (human primary glioblastoma) cell line. The IC50 value was found to be 58.63 ± 5.74 μg/mL. The results showed that green synthesized AgNPs exhibited significant antimicrobial and anticancer potency. In addition, nitrophenols, which are regarded as priority pollutants by the United States Environmental Protection Agency (USEPA), can also be catalytically reduced to less toxic aminophenols by utilizing synthesized AgNPs. As a model reaction, AgNPs are employed as a catalyst in the reduction of 4-nitrophenol to 4-aminophenol, which is an intermediate for numerous analgesics and antipyretic drugs. Thus, the study is expected to help immensely in the pharmaceutical industries in developing antimicrobial drugs and/or as an anticancer drug, as well as in the cosmetic and food industries.
Collapse
Affiliation(s)
- Kaushik Kumar Bharadwaj
- Department of Bioengineering and Technology, Gauhati University Institute of Science and Technology, Guwahati 781014, Assam, India; (K.K.B.); (B.R.); (N.K.)
| | - Bijuli Rabha
- Department of Bioengineering and Technology, Gauhati University Institute of Science and Technology, Guwahati 781014, Assam, India; (K.K.B.); (B.R.); (N.K.)
| | - Siddhartha Pati
- SIAN Institute, Association for Biodiversity Conservation and Research (ABC), Balasore 756001, Odisha, India;
- Centre of Excellence, Khallikote University, Berhampur, Ganjam 761008, Odisha, India
| | - Bhabesh Kumar Choudhury
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India; (B.K.C.); (S.K.G.)
| | - Tanmay Sarkar
- Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda 732102, West Bengal, India;
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Sonit Kumar Gogoi
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India; (B.K.C.); (S.K.G.)
| | - Nayanjyoti Kakati
- Department of Bioengineering and Technology, Gauhati University Institute of Science and Technology, Guwahati 781014, Assam, India; (K.K.B.); (B.R.); (N.K.)
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Gauhati University Institute of Science and Technology, Guwahati 781014, Assam, India; (K.K.B.); (B.R.); (N.K.)
| | - Zulhisyam Abdul Kari
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
| | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|