1
|
Saeedian Moghadam E, Bonyasi F, Bayati B, Sadeghi Moghadam M, Amini M. Recent Advances in Design and Development of Diazole and Diazine Based Fungicides (2014-2023). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15427-15448. [PMID: 38967261 DOI: 10.1021/acs.jafc.4c02187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
With fungal diseases posing a major threat to agricultural production, the application of fungicides to control related diseases is often considered necessary to ensure the world's food supply. The search for new bioactive agents has long been a priority in crop protection due to the continuous development of resistance against currently used types of active compounds. Heterocyclic compounds are an inseparable part of the core structures of numerous lead compounds, these rings constitute pharmacophores of a significant number of fungicides developed over the past decade by agrochemists. Among heterocycles, nitrogen-based compounds play an essential role. To date, diazole (imidazole and pyrazole) and diazine (pyrimidine, pyridazine, and pyrazine) derivatives make up an important series of synthetic fungicides. In recent years, many reports have been published on the design, synthesis, and study of the fungicidal activity of these scaffolds, but there was a lack of a comprehensive classified review on nitrogen-containing scaffolds. Regarding this issue, here we have reviewed the published articles on the fungicidal activity of the diazole and diazine families. In current review, we have classified the molecules synthesized so far based on the size of the ring.
Collapse
Affiliation(s)
- Ebrahim Saeedian Moghadam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Fahimeh Bonyasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Bahareh Bayati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahdis Sadeghi Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohsen Amini
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
2
|
An J, Pan N, Liu C, Chen H, Fei Q, Gan X, Wu W. Synthesis, biological evaluation, and molecular docking of novel ferulic acid derivatives containing a 1,3,4-oxadiazole thioether and trifluoromethyl pyrimidine skeleton. RSC Adv 2024; 14:16218-16227. [PMID: 38769972 PMCID: PMC11103566 DOI: 10.1039/d4ra01765j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
In this study, 24 novel ferulic acid derivatives containing 1,3,4-oxadiazole thioether and trifluoromethyl pyrimidine were designed and synthesized. Bioactivity assay showed that some of the target compounds exhibited moderate to good antifungal activity against Botryosphaeria dothidea BD), Phomopsis sp. (PS), Botrytis cinerea (BC), Fusarium spp. (FS), Fusarium graminearum (FG), and Colletotrichum sp. (CS). Especially, compound 6f demonstrated superior antifungal activity against Phomopsis sp., with an EC50 value of 12.64 μg mL-1, outperforming pyrimethanil (35.16 μg mL-1) and hymexazol (27.01 μg mL-1). Meanwhile, compound 6p showed strong antibacterial activity against X. axonopodis pv. citri (XAC) in vitro, with an inhibition ratio of 85.76%, which was higher than thiodiazole copper's 76.59% at 100 μg mL-1. Furthermore, molecular docking simulations elucidated that compound 6f engaged in hydrogen bonding with the succinate dehydrogenase (SDH) enzyme at SER-17, SER-39, ARG-14 and ARG-43 sites, clarifying its mode of action. This study highlights the potential of these novel ferulic acid derivatives as promising agents for controlling fungal and bacterial threats to plant health. To the best of our knowledge, this study represents the first report on the antifungal and antibacterial properties of ferulic acid derivatives containing 1,3,4-oxadiazole thioether and trifluoromethyl pyrimidine skeleton.
Collapse
Affiliation(s)
- Jiansong An
- School of Food Science and Engineering, Guiyang University Guiyang 550005 China
| | - Nianjuan Pan
- School of Food Science and Engineering, Guiyang University Guiyang 550005 China
| | - Chunyi Liu
- School of Food Science and Engineering, Guiyang University Guiyang 550005 China
| | - Haijiang Chen
- School of Food Science and Engineering, Guiyang University Guiyang 550005 China
| | - Qiang Fei
- School of Food Science and Engineering, Guiyang University Guiyang 550005 China
| | - Xiuhai Gan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Guiyang 550025 China
| | - Wenneng Wu
- School of Food Science and Engineering, Guiyang University Guiyang 550005 China
| |
Collapse
|
3
|
Asgaonkar KD, Chitre TS, Patil SM, Shevate KS, Sagar AK, Ghate DD, Shah PA. Green Chemistry and In silico Techniques for Synthesis of Novel Pyranopyrazole and Pyrazolo-pyrano-pyrimidine Derivatives as Promising Antifungal Agents. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2024; 19:216-231. [PMID: 38317465 DOI: 10.2174/0127724344269458231124123935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Every year Invasive Fungal Infections (IFI) are globally affecting millions of people. Candida albicans and Aspergillus niger have been reported as the most infectious and mortality-inducing fungal strains among all pathogenic fungi. AIMS & OBJECTIVES To tackle this problem in the current study Pyranopyrazoles and Pyrazolopyrano- pyrimidine derivatives were developed using molecular hybridization, green chemistry and one-pot multicomponent reaction. MATERIALS AND METHODS In the present work, New Chemical entities (NCE's) were developed on the basis of Structure activity relationship. All designed NCE's were screened for ADMET studies using the QikProp module of Schrodinger software. NCE's with zero violations were further docked on the crystal structure of 14α demethylase, cytochrome P450 and thymidine synthase (PDB ID: 5V5Z, 7SHI, 1BID). Selected molecules were synthesized using green chemistry techniques and evaluated for in vitro antifungal activity against Candida albicans and Aspergillus niger. RESULTS AND DISCUSSION Designed NCE's (B1-12 and C1-11) showed favorable results in ADMET studies. In the docking study six compounds from series-B and five molecules from series- C showed good dock score and binding interaction when compared with the standard drugs. Compounds B-3 and C-4 showed the highest zone of inhibition activity against Candida albicans, where as B-1 and C-3 had shown highest zone of inhibition activity against Aspergillus niger. CONCLUSION Bicyclic ring (series B) showed better activity as compare to fused tricyclic ring (series C).
Collapse
Affiliation(s)
- Kalyani Dhirendra Asgaonkar
- Department of Pharmaceutical Chemistry, All India Shri Shivaji Memorial Society's College of Pharmacy, Pune 411001, Maharashtra, India
| | - Trupti Sameer Chitre
- Department of Pharmaceutical Chemistry, All India Shri Shivaji Memorial Society's College of Pharmacy, Pune 411001, Maharashtra, India
| | - Shital Manoj Patil
- Department of Pharmaceutical Chemistry, All India Shri Shivaji Memorial Society's College of Pharmacy, Pune 411001, Maharashtra, India
| | - Krishna Sambhajirao Shevate
- Department of Pharmaceutical Chemistry, All India Shri Shivaji Memorial Society's College of Pharmacy, Pune 411001, Maharashtra, India
| | - Ashwini Kishan Sagar
- Department of Pharmaceutical Chemistry, All India Shri Shivaji Memorial Society's College of Pharmacy, Pune 411001, Maharashtra, India
| | - Dipti Dattatray Ghate
- Department of Pharmaceutical Chemistry, All India Shri Shivaji Memorial Society's College of Pharmacy, Pune 411001, Maharashtra, India
| | - Parth Anil Shah
- Department of Pharmaceutical Chemistry, All India Shri Shivaji Memorial Society's College of Pharmacy, Pune 411001, Maharashtra, India
| |
Collapse
|
4
|
Munzen ME, Goncalves Garcia AD, Martinez LR. An update on the global treatment of invasive fungal infections. Future Microbiol 2023; 18:1095-1117. [PMID: 37750748 PMCID: PMC10718168 DOI: 10.2217/fmb-2022-0269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/13/2023] [Indexed: 09/27/2023] Open
Abstract
Fungal infections are a serious problem affecting many people worldwide, creating critical economic and medical consequences. Fungi are ubiquitous and can cause invasive diseases in individuals mostly living in developing countries or with weakened immune systems, and antifungal drugs currently available have important limitations in tolerability and efficacy. In an effort to counteract the high morbidity and mortality rates associated with invasive fungal infections, various approaches are being utilized to discover and develop new antifungal agents. This review discusses the challenges posed by fungal infections, outlines different methods for developing antifungal drugs and reports on the status of drugs currently in clinical trials, which offer hope for combating this serious global problem.
Collapse
Affiliation(s)
- Melissa E Munzen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | - Luis R Martinez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
- Center for Immunology and Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
5
|
Carreón-Anguiano KG, Gómez-Tah R, Pech-Balan E, Ek-Hernández GE, De los Santos-Briones C, Islas-Flores I, Canto-Canché B. Pseudocercospora fijiensis Conidial Germination Is Dominated by Pathogenicity Factors and Effectors. J Fungi (Basel) 2023; 9:970. [PMID: 37888226 PMCID: PMC10607838 DOI: 10.3390/jof9100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Conidia play a vital role in the survival and rapid spread of fungi. Many biological processes of conidia, such as adhesion, signal transduction, the regulation of oxidative stress, and autophagy, have been well studied. In contrast, the contribution of pathogenicity factors during the development of conidia in fungal phytopathogens has been poorly investigated. To date, few reports have centered on the pathogenicity functions of fungal phytopathogen conidia. Pseudocercospora fijiensis is a hemibiotrophic fungus and the causal agent of the black Sigatoka disease in bananas and plantains. Here, a conidial transcriptome of P. fijiensis was characterized computationally. Carbohydrates, amino acids, and lipid metabolisms presented the highest number of annotations in Gene Ontology. Common conidial functions were found, but interestingly, pathogenicity factors and effectors were also identified. Upon analysis of the resulting proteins against the Pathogen-Host Interaction (PHI) database, 754 hits were identified. WideEffHunter and EffHunter effector predictors identified 618 effectors, 265 of them were shared with the PHI database. A total of 1107 conidial functions devoted to pathogenesis were found after our analysis. Regarding the conidial effectorome, it was found to comprise 40 canonical and 578 non-canonical effectors. Effectorome characterization revealed that RXLR, LysM, and Y/F/WxC are the largest effector families in the P. fijiensis conidial effectorome. Gene Ontology classification suggests that they are involved in many biological processes and metabolisms, expanding our current knowledge of fungal effectors.
Collapse
Affiliation(s)
- Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Rufino Gómez-Tah
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Efren Pech-Balan
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Gemaly Elisama Ek-Hernández
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - César De los Santos-Briones
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico;
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| |
Collapse
|
6
|
Patil SB. Recent medicinal approaches of novel pyrimidine analogs: A review. Heliyon 2023; 9:e16773. [PMID: 37346348 PMCID: PMC10279829 DOI: 10.1016/j.heliyon.2023.e16773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Pyrimidine derivatives attract researchers due to their versatile scaffold & their medicinal significance. Pyrimidine associated analogs are majorly contributed to the field of medicinal chemistry. In this review article, the recent new structural design and development of active agent studies and biological approaches are highlighted. In addition, the biological potency and the structure-activity relationship of pyrimidines such as antimicrobial, anticancer, anti-inflammatory, analgesic, anti-diabetic, anti-HIV, anthelmintic, CNS depressants, and cardiac agents are discussed. Finally, this review article may attract the researchers for new structural design and development of novel active pyrimidine scaffolds with more active and less harmful.
Collapse
|
7
|
Pereira de Sa N, Jayanetti K, Rendina D, Clement T, Soares Brauer V, Mota Fernandes C, Ojima I, Airola MV, Del Poeta M. Targeting Sterylglucosidase A to Treat Aspergillus fumigatus Infections. mBio 2023; 14:e0033923. [PMID: 36877042 PMCID: PMC10128061 DOI: 10.1128/mbio.00339-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/07/2023] Open
Abstract
Invasive fungal infections are a leading cause of death in immunocompromised patients. Current therapies have several limitations, and innovative antifungal agents are critically needed. Previously, we identified the fungus-specific enzyme sterylglucosidase as essential for pathogenesis and virulence of Cryptococcus neoformans and Aspergillus fumigatus (Af) in murine models of mycoses. Here, we developed Af sterylglucosidase A (SglA) as a therapeutic target. We identified two selective inhibitors of SglA with distinct chemical scaffolds that bind in the active site of SglA. Both inhibitors induce sterylglucoside accumulation and delay filamentation in Af and increase survival in a murine model of pulmonary aspergillosis. Structure-activity relationship (SAR) studies identified a more potent derivative that enhances both in vitro phenotypes and in vivo survival. These findings support sterylglucosidase inhibition as a promising antifungal approach with broad-spectrum potential. IMPORTANCE Invasive fungal infections are a leading cause of death in immunocompromised patients. Aspergillus fumigatus is a fungus ubiquitously found in the environment that, upon inhalation, causes both acute and chronic illnesses in at-risk individuals. A. fumigatus is recognized as one of the critical fungal pathogens for which a substantive treatment breakthrough is urgently needed. Here, we studied a fungus-specific enzyme, sterylglucosidase A (SglA), as a therapeutic target. We identified selective inhibitors of SglA that induce accumulation of sterylglucosides and delay filamentation in A. fumigatus and increase survival in a murine model of pulmonary aspergillosis. We determined the structure of SglA, predicted the binding poses of these inhibitors through docking analysis, and identified a more efficacious derivative with a limited SAR study. These results open several exciting avenues for the research and development of a new class of antifungal agents targeting sterylglucosidases.
Collapse
Affiliation(s)
- Nivea Pereira de Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Kalani Jayanetti
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Dominick Rendina
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Timothy Clement
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Veronica Soares Brauer
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook, New York, USA
| | - Michael V. Airola
- Institute of Chemical Biology and Drug Discovery, Stony Brook, New York, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook, New York, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
| |
Collapse
|
8
|
Design, Synthesis and Bioactivity of Novel Pyrimidine Sulfonate Esters Containing Thioether Moiety. Int J Mol Sci 2023; 24:ijms24054691. [PMID: 36902121 PMCID: PMC10003536 DOI: 10.3390/ijms24054691] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
Pesticides play an important role in crop disease and pest control. However, their irrational use leads to the emergence of drug resistance. Therefore, it is necessary to search for new pesticide-lead compounds with new structures. We designed and synthesized 33 novel pyrimidine derivatives containing sulfonate groups and evaluated their antibacterial and insecticidal activities. Results: Most of the synthesized compounds showed good antibacterial activity against Xanthomonas oryzae pv. Oryzae (Xoo), Xanthomonas axonopodis pv. Citri (Xac), Pseudomonas syringae pv. actinidiae (Psa) and Ralstonia solanacearum (Rs), and certain insecticidal activity. A5, A31 and A33 showed strong antibacterial activity against Xoo, with EC50 values of 4.24, 6.77 and 9.35 μg/mL, respectively. Compounds A1, A3, A5 and A33 showed remarkable activity against Xac (EC50 was 79.02, 82.28, 70.80 and 44.11 μg/mL, respectively). In addition, A5 could significantly improve the defense enzyme (superoxide dismutase, peroxidase, phenylalanine ammonia-lyase and catalase) activity of plants against pathogens and thus improve the disease resistance of plants. Moreover, a few compounds also showed good insecticidal activity against Plutella xylostella and Myzus persicae. The results of this study provide insight into the development of new broad-spectrum pesticides.
Collapse
|
9
|
Synthesis, bioactivity and preliminary mechanism of action of novel trifluoromethyl pyrimidine derivatives. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Lan W, Tang X, Yu J, Fei Q, Wu W, Li P, Luo H. Design, Synthesis, and Bioactivities of Novel Trifluoromethyl Pyrimidine Derivatives Bearing an Amide Moiety. Front Chem 2022; 10:952679. [PMID: 35910720 PMCID: PMC9334529 DOI: 10.3389/fchem.2022.952679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Twenty-three novel trifluoromethyl pyrimidine derivatives containing an amide moiety were designed and synthesized through four-step reactions and evaluated for their antifungal, insecticidal, and anticancer properties. Bioassay results indicated that some of the title compounds exhibited good in vitro antifungal activities against Botryosphaeria dothidea (B. dothidea), Phompsis sp., Botrytis cinereal (B. cinerea), Colletotrichum gloeosporioides (C. gloeosporioides), Pyricutaria oryzae (P. oryzae), and Sclerotinia sclerotiorum (S. sclerotiorum) at 50 μg/ml. Meanwhile, the synthesized compounds showed moderate insecticidal activities against Mythimna separata (M. separata) and Spdoptera frugiperda (S. frugiperda) at 500 μg/ml, which were lower than those of chlorantraniliprole. In addition, the synthesized compounds indicated certain anticancer activities against PC3, K562, Hela, and A549 at 5 μg/ml, which were lower than those of doxorubicin. Notably, this work is the first report on the antifungal, insecticidal, and anticancer activities of trifluoromethyl pyrimidine derivatives bearing an amide moiety.
Collapse
Affiliation(s)
- Wenjun Lan
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Xuemei Tang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Qiang Fei
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Wenneng Wu
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
- *Correspondence: Wenneng Wu, ; Pei Li, ; Heng Luo,
| | - Pei Li
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine, Kaili University, Kaili, China
- *Correspondence: Wenneng Wu, ; Pei Li, ; Heng Luo,
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- *Correspondence: Wenneng Wu, ; Pei Li, ; Heng Luo,
| |
Collapse
|
11
|
Wang X, Duan W, Lin G, Li B, Zhang W, Lei F. Synthesis, Antifungal Activity, Three-Dimensional Quantitative Structure-Activity Relationship and Molecular Docking Study of 4-Acyl-3-amino-1,2,4-triazole-thioether Derivatives Containing Natural Pinene Structure. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
El-Gohary NM, Ibrahim MA, Farouk O. Utility of 2-[(1-chloro-3-oxoprop-1-en-1-yl)amino]-4-(4-methoxyphenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile for construction of some new heterocyclic systems as antimicrobial agents. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1998536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nasser M. El-Gohary
- Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Egypt
| | - Magdy A. Ibrahim
- Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Egypt
| | - Osama Farouk
- Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Egypt
| |
Collapse
|
13
|
Synthesis and Antifungal and Insecticidal Activities of Novel N-Phenylbenzamide Derivatives Bearing a Trifluoromethylpyrimidine Moiety. J CHEM-NY 2021. [DOI: 10.1155/2021/8370407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Seventeen novel N-phenylbenzamide derivatives bearing a trifluoromethylpyrimidine moiety were synthesized via four-step reactions. Their antifungal and insecticidal properties were evaluated. Antifungal test results demonstrated that some of the synthesized compounds showed better in vitro bioactivities against Phomopsis sp., Botryosphaeria dothidea (B. dothidea), and Botrytis cinerea (B. cinerea) at 50 μg/mL than pyrimethanil. Unfortunately, the synthesized compounds revealed lower insecticidal activities against Spodoptera frugiperda (S. frugiperda) and Mythimna separata (M. separata) at 500 μg/mL than chlorantraniliprole.
Collapse
|