1
|
Hong C, Oh S, Dat VK, Pak S, Cha S, Ko KH, Choi GM, Low T, Oh SH, Kim JH. Engineering electrode interfaces for telecom-band photodetection in MoS 2/Au heterostructures via sub-band light absorption. LIGHT, SCIENCE & APPLICATIONS 2023; 12:280. [PMID: 37996413 PMCID: PMC10667329 DOI: 10.1038/s41377-023-01308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 11/25/2023]
Abstract
Transition metal dichalcogenide (TMD) layered semiconductors possess immense potential in the design of photonic, electronic, optoelectronic, and sensor devices. However, the sub-bandgap light absorption of TMD in the range from near-infrared (NIR) to short-wavelength infrared (SWIR) is insufficient for applications beyond the bandgap limit. Herein, we report that the sub-bandgap photoresponse of MoS2/Au heterostructures can be robustly modulated by the electrode fabrication method employed. We observed up to 60% sub-bandgap absorption in the MoS2/Au heterostructure, which includes the hybridized interface, where the Au layer was applied via sputter deposition. The greatly enhanced absorption of sub-bandgap light is due to the planar cavity formed by MoS2 and Au; as such, the absorption spectrum can be tuned by altering the thickness of the MoS2 layer. Photocurrent in the SWIR wavelength range increases due to increased absorption, which means that broad wavelength detection from visible toward SWIR is possible. We also achieved rapid photoresponse (~150 µs) and high responsivity (17 mA W-1) at an excitation wavelength of 1550 nm. Our findings demonstrate a facile method for optical property modulation using metal electrode engineering and for realizing SWIR photodetection in wide-bandgap 2D materials.
Collapse
Affiliation(s)
- Chengyun Hong
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Saejin Oh
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Vu Khac Dat
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sangyeon Pak
- School of Electronic and Electrical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - SeungNam Cha
- Department of Physics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyung-Hun Ko
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gyung-Min Choi
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Ji-Hee Kim
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of Physics, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
2
|
Ali MH, Al Mamun MA, Haque MD, Rahman MF, Hossain MK, Md. Touhidul Islam AZ. Performance Enhancement of an MoS 2-Based Heterojunction Solar Cell with an In 2Te 3 Back Surface Field: A Numerical Simulation Approach. ACS OMEGA 2023; 8:7017-7029. [PMID: 36844558 PMCID: PMC9948157 DOI: 10.1021/acsomega.2c07846] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Researchers are currently showing interest in molybdenum disulfide (MoS2)-based solar cells due to their remarkable semiconducting characteristics. The incompatibility of the band structures at the BSF/absorber and absorber/buffer interfaces, as well as carrier recombination at the rear and front metal contacts, prevents the expected result from being achieved. The main purpose of this work is to enhance the performance of the newly proposed Al/ITO/TiO2/MoS2/In2Te3/Ni solar cell and investigate the impacts of the In2Te3 BSF and TiO2 buffer layer on the performance parameters of open-circuit voltage (V OC), short-circuit current density (J SC), fill factor (FF), and power conversion efficiency (PCE). This research has been performed by utilizing SCAPS simulation software. The performance parameters such as variation of thickness, carrier concentration, the bulk defect concentration of each layer, interface defect, operating temperature, capacitance-voltage (C-V), surface recombination velocity, and front as well as rear electrodes have been analyzed to achieve a better performance. This device performs exceptionally well at lower carrier concentrations (1 × 1016 cm-3) in a thin (800 nm) MoS2 absorber layer. The PCE, V OC, J SC, and FF values of the Al/ITO/TiO2/MoS2/Ni reference cell have been estimated to be 22.30%, 0.793 V, 30.89 mA/cm2, and 80.62% respectively, while the PCE, V OC, J SC, and FF values have been determined to be 33.32%, 1.084 V, 37.22 mA/cm2, and 82.58% for the Al/ITO/TiO2/MoS2/In2Te3/Ni proposed solar cell by introducing In2Te3 between the absorber (MoS2) and the rear electrode (Ni). The proposed research may give an insight and a feasible way to realize a cost-effective MoS2-based thin-film solar cell.
Collapse
Affiliation(s)
- Md. Hasan Ali
- Department
of Electrical and Electronic Engineering, Begum Rokeya University, Rangpur, Rangpur 5400, Bangladesh
| | - Md. Abdullah Al Mamun
- Department
of Electrical and Electronic Engineering, Begum Rokeya University, Rangpur, Rangpur 5400, Bangladesh
| | - Md. Dulal Haque
- Department
of Electronics and Communication Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md. Ferdous Rahman
- Department
of Electrical and Electronic Engineering, Begum Rokeya University, Rangpur, Rangpur 5400, Bangladesh
| | - M. Khalid Hossain
- Institute
of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | | |
Collapse
|
3
|
Wu M, Li X, Mu X, Zhang X, Wang H, Zhang XD. Multimodal molecular imaging in the second near-infrared window. Nanomedicine (Lond) 2022; 17:1585-1606. [PMID: 36476011 DOI: 10.2217/nnm-2022-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Near-infrared-II (NIR-II) fluorescence imaging has rapidly developed for the noninvasive investigation of physiological and pathological activities in living organisms with high spatiotemporal resolution. However, the penetration depth of fluorescence restricts its ability to provide deep anatomical information. Scientists integrate NIR-II fluorescence imaging with other imaging modes (such as photoacoustic and magnetic resonance imaging) to create multimodal imaging that can acquire detailed anatomical and quantitative information with deeper penetration by using multifunctional probes. This review offers a comprehensive picture of NIR-II-based dual/multimodal imaging probes and highlights advances in bioimaging and therapy. In addition, seminal studies and trends in multimodal imaging probes activated by NIR-II laser are summarized and several key points regarding future clinical translation are elucidated.
Collapse
Affiliation(s)
- Menglin Wu
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China.,Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xue Li
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xuening Zhang
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China.,Department of Physics & Tianjin Key Laboratory of Low Dimensional Materials Physics & Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| |
Collapse
|