1
|
Cammas A, Desprairies A, Dassi E, Millevoi S. The shaping of mRNA translation plasticity by RNA G-quadruplexes in cancer progression and therapy resistance. NAR Cancer 2024; 6:zcae025. [PMID: 38828391 PMCID: PMC11140630 DOI: 10.1093/narcan/zcae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
Translational reprogramming in response to oncogenic signaling or microenvironmental stress factors shapes the proteome of cancer cells, enabling adaptation and phenotypic changes underlying cell plasticity, tumor progression and response to cancer therapy. Among the mechanisms regulating translation are RNA G-quadruplexes (RG4s), non-canonical four-stranded structures whose conformational modulation by small molecule ligands and RNA-binding proteins affects the expression of cancer proteins. Here, we discuss the role of RG4s in the regulation of mRNA translation by focusing on paradigmatic examples showing their contribution to adaptive mechanisms of mRNA translation in cancer.
Collapse
Affiliation(s)
- Anne Cammas
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm U1037, CNRS, 2 avenue Hubert Curien, 31037 Toulouse, France
| | - Alice Desprairies
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm U1037, CNRS, 2 avenue Hubert Curien, 31037 Toulouse, France
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento (TN), Italy
| | - Stefania Millevoi
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm U1037, CNRS, 2 avenue Hubert Curien, 31037 Toulouse, France
| |
Collapse
|
2
|
Bose R, Saleem I, Mustoe AM. Causes, functions, and therapeutic possibilities of RNA secondary structure ensembles and alternative states. Cell Chem Biol 2024; 31:17-35. [PMID: 38199037 PMCID: PMC10842484 DOI: 10.1016/j.chembiol.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
RNA secondary structure plays essential roles in encoding RNA regulatory fate and function. Most RNAs populate ensembles of alternatively paired states and are continually unfolded and refolded by cellular processes. Measuring these structural ensembles and their contributions to cellular function has traditionally posed major challenges, but new methods and conceptual frameworks are beginning to fill this void. In this review, we provide a mechanism- and function-centric compendium of the roles of RNA secondary structural ensembles and minority states in regulating the RNA life cycle, from transcription to degradation. We further explore how dysregulation of RNA structural ensembles contributes to human disease and discuss the potential of drugging alternative RNA states to therapeutically modulate RNA activity. The emerging paradigm of RNA structural ensembles as central to RNA function provides a foundation for a deeper understanding of RNA biology and new therapeutic possibilities.
Collapse
Affiliation(s)
- Ritwika Bose
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Irfana Saleem
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony M Mustoe
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Xu Y, Komiyama M. G-Quadruplexes in Human Telomere: Structures, Properties, and Applications. Molecules 2023; 29:174. [PMID: 38202757 PMCID: PMC10780218 DOI: 10.3390/molecules29010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
G-quadruplexes, intricate four-stranded structures composed of G-tetrads formed by four guanine bases, are prevalent in both DNA and RNA. Notably, these structures play pivotal roles in human telomeres, contributing to essential cellular functions. Additionally, the existence of DNA:RNA hybrid G-quadruplexes adds a layer of complexity to their structural diversity. This review provides a comprehensive overview of recent advancements in unraveling the intricacies of DNA and RNA G-quadruplexes within human telomeres. Detailed insights into their structural features are presented, encompassing the latest developments in chemical approaches designed to probe these G-quadruplex structures. Furthermore, this review explores the applications of G-quadruplex structures in targeting human telomeres. Finally, the manuscript outlines the imminent challenges in this evolving field, setting the stage for future investigations.
Collapse
Affiliation(s)
- Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
4
|
Das A, Chakraborty J, Luikham S, Banerjee S, Bhattacharya J, Dutta S. Targeting aloe active compounds to c-KIT promoter G-quadruplex and comparative study of their anti proliferative property. J Biomol Struct Dyn 2023; 41:9686-9694. [PMID: 36379679 DOI: 10.1080/07391102.2022.2145370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022]
Abstract
Small molecules targeting G-quadruplex of oncogene promoter is considered as a promising anticancer therapeutics approach. Natural aloe compounds aloe emodin, and its glycoside derivative aloe emodin-8-glucoside and aloin have anticancer activity and also have potential DNA binding ability. These three compounds have promising binding ability towards quadruplex structures particularly c-KIT G-quadruplex. Here, this study demonstrates complete biophysical study of these compounds to c-KIT quadruplex structure. Aloe emodin showed highest binding stabilization with c-KIT which has been proved by absorbance, fluorescence, dye displacement, ITC and SPR studies. Moreover, comparative study of these compounds with HCT 116 cells line also agreed to their anti proliferative property which may be helpful to establish these aloe compounds as potential anticancer drugs. This study comprises a complete biophysical study along with their anti proliferative property and demonstrates aloe emodin as a potent c-KIT binding molecule.
Collapse
Affiliation(s)
- Abhi Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Jeet Chakraborty
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Soching Luikham
- Department of Chemistry, National Institute of Technology Nagaland, Dimapur, India
| | - Sayanika Banerjee
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Jhimli Bhattacharya
- Department of Chemistry, National Institute of Technology Nagaland, Dimapur, India
| | - Sanjay Dutta
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
5
|
Han ZQ, Wen LN. Application of G-quadruplex targets in gastrointestinal cancers: Advancements, challenges and prospects. World J Gastrointest Oncol 2023; 15:1149-1173. [PMID: 37546556 PMCID: PMC10401460 DOI: 10.4251/wjgo.v15.i7.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
Genomic instability and inflammation are considered to be two enabling characteristics that support cancer development and progression. G-quadruplex structure is a key element that contributes to genomic instability and inflammation. G-quadruplexes were once regarded as simply an obstacle that can block the transcription of oncogenes. A ligand targeting G-quadruplexes was found to have anticancer activity, making G-quadruplexes potential anticancer targets. However, further investigation has revealed that G-quadruplexes are widely distributed throughout the human genome and have many functions, such as regulating DNA replication, DNA repair, transcription, translation, epigenetics, and inflammatory response. G-quadruplexes play double regulatory roles in transcription and translation. In this review, we focus on G-quadruplexes as novel targets for the treatment of gastrointestinal cancers. We summarize the application basis of G-quadruplexes in gastrointestinal cancers, including their distribution sites, structural characteristics, and physiological functions. We describe the current status of applications for the treatment of esophageal cancer, pancreatic cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, and gastrointestinal stromal tumors, as well as the associated challenges. Finally, we review the prospective clinical applications of G-quadruplex targets, providing references for targeted treatment strategies in gastrointestinal cancers.
Collapse
Affiliation(s)
- Zong-Qiang Han
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital, Beijing 102211, China
| | - Li-Na Wen
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
6
|
Hanson EK, Whelan RJ. Application of the Nicoya OpenSPR to Studies of Biomolecular Binding: A Review of the Literature from 2016 to 2022. SENSORS (BASEL, SWITZERLAND) 2023; 23:4831. [PMID: 37430747 DOI: 10.3390/s23104831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 07/12/2023]
Abstract
The Nicoya OpenSPR is a benchtop surface plasmon resonance (SPR) instrument. As with other optical biosensor instruments, it is suitable for the label-free interaction analysis of a diverse set of biomolecules, including proteins, peptides, antibodies, nucleic acids, lipids, viruses, and hormones/cytokines. Supported assays include affinity/kinetics characterization, concentration analysis, yes/no assessment of binding, competition studies, and epitope mapping. OpenSPR exploits localized SPR detection in a benchtop platform and can be connected with an autosampler (XT) to perform automated analysis over an extended time period. In this review article, we provide a comprehensive survey of the 200 peer-reviewed papers published between 2016 and 2022 that use the OpenSPR platform. We highlight the range of biomolecular analytes and interactions that have been investigated using the platform, provide an overview on the most common applications for the instrument, and point out some representative research that highlights the flexibility and utility of the instrument.
Collapse
Affiliation(s)
- Eliza K Hanson
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Rebecca J Whelan
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
7
|
Georgakopoulos-Soares I, Parada GE, Hemberg M. Secondary structures in RNA synthesis, splicing and translation. Comput Struct Biotechnol J 2022; 20:2871-2884. [PMID: 35765654 PMCID: PMC9198270 DOI: 10.1016/j.csbj.2022.05.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022] Open
Abstract
Even though the functional role of mRNA molecules is primarily decided by the nucleotide sequence, several properties are determined by secondary structure conformations. Examples of secondary structures include long range interactions, hairpins, R-loops and G-quadruplexes and they are formed through interactions of non-adjacent nucleotides. Here, we discuss advances in our understanding of how secondary structures can impact RNA synthesis, splicing, translation and mRNA half-life. During RNA synthesis, secondary structures determine RNA polymerase II (RNAPII) speed, thereby influencing splicing. Splicing is also determined by RNA binding proteins and their binding rates are modulated by secondary structures. For the initiation of translation, secondary structures can control the choice of translation start site. Here, we highlight the mechanisms by which secondary structures modulate these processes, discuss advances in technologies to detect and study them systematically, and consider the roles of RNA secondary structures in disease.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Guillermo E. Parada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5A 1A8, Canada
| | - Martin Hemberg
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|