1
|
Farrokhi S, Eslahi A, Alizadeh F, Kerachian MA, Mojarrad M. Assessment the Efficacy of the CRISPR System for Inducing Mutations in the AIMP2 Gene to Create a Cell Line Model of HLD17 Disease. Mol Biotechnol 2024:10.1007/s12033-024-01257-9. [PMID: 39433694 DOI: 10.1007/s12033-024-01257-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/22/2024] [Indexed: 10/23/2024]
Abstract
Hypomyelinating leukodystrophy-17 is a neurodevelopmental disorder caused by autosomal recessive mutations in the AIMP2 gene, resulting in a lack of myelin deposition during brain development, leading to variable neurological symptoms. Research on brain function in these disorders is challenging due to the lack of access to brain tissue. To overcome this problem, researchers have utilized different cell and animal models. The CRISPR-Cas9 system is considered the most optimal and effective method for genetic modification and developing cell models. We studied the efficacy of the CRISPR-Cas9 technology in inducing mutations in the AIMP2 gene in HEK293 cell lines. The study involved transfecting HEK293 cells with recombinant PX458 plasmids targeting spCas-9 and AIMP2 sgRNA. The cells were evaluated using fluorescent microscopy and enriched using serial dilution. The CRISPR/Cas9 plasmids were validated through PCR and Sanger sequencing. After serial dilution, AS-PCR, Sanger sequencing, and TIDE program analysis showed the construct successfully induces an indel mutation in HEK cells. Our findings demonstrated the great efficacy of the CRISPR system and produced a construct for inducing mutations in the AIMP2 gene, which can be utilized to edit the AIMP2 gene in nerve cells and create a cellular model of the HLD17 disease.
Collapse
Affiliation(s)
- Shima Farrokhi
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Eslahi
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Alizadeh
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Allemailem KS, Almatroudi A, Alrumaihi F, Alradhi AE, Theyab A, Algahtani M, Alhawas MO, Dobie G, Moawad AA, Rahmani AH, Khan AA. Current Updates of CRISPR/Cas System and Anti-CRISPR Proteins: Innovative Applications to Improve the Genome Editing Strategies. Int J Nanomedicine 2024; 19:10185-10212. [PMID: 39399829 PMCID: PMC11471075 DOI: 10.2147/ijn.s479068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated sequence (CRISPR/Cas) system is a cutting-edge genome-editing tool employed to explore the functions of normal and disease-related genes. The CRISPR/Cas system has a remarkable diversity in the composition and architecture of genomic loci and Cas protein sequences. Owing to its excellent efficiency and specificity, this system adds an outstanding dimension to biomedical research on genetic manipulation of eukaryotic cells. However, safe, efficient, and specific delivery of this system to target cells and tissues and their off-target effects are considered critical bottlenecks for the therapeutic applications. Recently discovered anti-CRISPR proteins (Acr) play a significant role in limiting the effects of this system. Acrs are relatively small proteins that are highly specific to CRISPR variants and exhibit remarkable structural diversity. The in silico approaches, crystallography, and cryo-electron microscopy play significant roles in elucidating the mechanisms of action of Acrs. Acrs block the CRISPR/Cas system mainly by employing four mechanisms: CRISPR/Cas complex assembly interruption, target-binding interference, target cleavage prevention, and degradation of cyclic oligonucleotide signaling molecules. Engineered CRISPR/Cas systems are frequently used in gene therapy, diagnostics, and functional genomics. Understanding the molecular mechanisms underlying Acr action may help in the safe and effective use of CRISPR/Cas tools for genetic modification, particularly in the context of medicine. Thus, attempts to regulate prokaryotic CRISPR/Cas surveillance complexes will advance the development of antimicrobial drugs and treatment of human diseases. In this review, recent updates on CRISPR/Cas systems, especially CRISPR/Cas9 and Acrs, and their novel mechanistic insights are elaborated. In addition, the role of Acrs in the novel applications of CRISPP/Cas biotechnology for precise genome editing and other applications is discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arwa Essa Alradhi
- General Administration for Infectious Disease Control, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca 21955, Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca 21955, Saudi Arabia
| | | | - Gasim Dobie
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Gizan, 82911, Saudi Arabia
| | - Amira A Moawad
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena 07743, Germany
- Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
3
|
Davodabadi F, Farasati Far B, Sargazi S, Fatemeh Sajjadi S, Fathi-Karkan S, Mirinejad S, Ghotekar S, Sargazi S, Rahman MM. Nanomaterials-Based Targeting of Long Non-Coding RNAs in Cancer: A Cutting-Edge Review of Current Trends. ChemMedChem 2024; 19:e202300528. [PMID: 38267373 DOI: 10.1002/cmdc.202300528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
This review article spotlights the burgeoning potential of using nanotherapeutic strategies to target long non-coding RNAs (lncRNAs) in cancer cells. This updated discourse underlines the prominent role of lncRNAs in instigating cancer, facilitating its progression, and metastasis, validating lncRNAs' potential for being effective diagnostic biomarkers and therapeutic targets. The manuscript offers an in-depth examination of different strategies presently employed to modulate lncRNA expression and function for therapeutic purposes. Among these strategies, Antisense Oligonucleotides (ASOs), RNA interference (RNAi) technologies, and the innovative clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing tools garner noteworthy mention. A significant section of the review is dedicated to nanocarriers and their crucial role in drug delivery. These nanocarriers' efficiency in targeting lncRNAs in varied types of cancers is elaborated upon, validating the importance of targeted therapy. The manuscript culminates by reaffirming the promising prospects of targeting lncRNAs to enhance the accuracy of cancer diagnosis and improve treatment efficacy. Consequently, new paths are opened to more research and innovation in employing nanotherapeutic approaches against lncRNAs in cancer cells. Thus, this comprehensive manuscript serves as a valuable resource that underscores the vital role of lncRNAs and the various nano-strategies for targeting them in cancer treatment. Future research should also focus on unraveling the complex regulatory networks involving lncRNAs and identifying fundamental functional interactions to refine therapeutic strategies targeting lncRNAs in cancer.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyedeh Fatemeh Sajjadi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 9453155166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Suresh Ghotekar
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
4
|
Hii ARK, Qi X, Wu Z. Advanced strategies for CRISPR/Cas9 delivery and applications in gene editing, therapy, and cancer detection using nanoparticles and nanocarriers. J Mater Chem B 2024; 12:1467-1489. [PMID: 38288550 DOI: 10.1039/d3tb01850d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Cancer remains one of the deadliest diseases, and is characterised by the uncontrolled growth of modified human cells. Unlike infectious diseases, cancer does not originate from foreign agents. Though a variety of diagnostic procedures are available; their cost-effectiveness and accessibility create significant hurdles. Non-specific cancer symptoms further complicate early detection, leading to belated recognition of certain cancer. The lack of reliable biomarkers hampers effective treatment, as chemotherapy, radiation therapy, and surgery often result in poor outcomes and high recurrence rates. Genetic and epigenetic mutations play a crucial role in cancer pathogenesis, necessitating the development of alternate treatment methods. The advent of CRISPR/Cas9 technology has transformed molecular biology and exhibits potential for gene modification and therapy in various cancer types. Nonetheless, obstacles such as safe transport, off-target consequences, and potency must be overcome before widespread clinical use. Notably, this review delves into the multifaceted landscape of cancer research, highlighting the pivotal role of nanoparticles in advancing CRISPR/Cas9-based cancer interventions. By addressing the challenges associated with cancer diagnosis and treatment, this integrated approach paves the way for innovative solutions and improved patient outcomes.
Collapse
Affiliation(s)
| | - Xiaole Qi
- Industrial Technology Innovation Platform, Zhejiang Center for Safety Study of Drug Substances, China Pharmaceutical University, 210009, 310018, Nanjing, Hangzhou, P. R. China.
| | - Zhenghong Wu
- Pharmaceutical University, 210009, Nanjing, P. R. China.
| |
Collapse
|
5
|
Tyumentseva M, Tyumentsev A, Akimkin V. CRISPR/Cas9 Landscape: Current State and Future Perspectives. Int J Mol Sci 2023; 24:16077. [PMID: 38003266 PMCID: PMC10671331 DOI: 10.3390/ijms242216077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is a unique genome editing tool that can be easily used in a wide range of applications, including functional genomics, transcriptomics, epigenetics, biotechnology, plant engineering, livestock breeding, gene therapy, diagnostics, and so on. This review is focused on the current CRISPR/Cas9 landscape, e.g., on Cas9 variants with improved properties, on Cas9-derived and fusion proteins, on Cas9 delivery methods, on pre-existing immunity against CRISPR/Cas9 proteins, anti-CRISPR proteins, and their possible roles in CRISPR/Cas9 function improvement. Moreover, this review presents a detailed outline of CRISPR/Cas9-based diagnostics and therapeutic approaches. Finally, the review addresses the future expansion of genome editors' toolbox with Cas9 orthologs and other CRISPR/Cas proteins.
Collapse
Affiliation(s)
- Marina Tyumentseva
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia; (A.T.); (V.A.)
| | | | | |
Collapse
|
6
|
Tian M, Zhang R, Li J. Emergence of CRISPR/Cas9-mediated bioimaging: A new dawn of in-situ detection. Biosens Bioelectron 2023; 232:115302. [PMID: 37086563 DOI: 10.1016/j.bios.2023.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/24/2023]
Abstract
In-situ detection provides deep insights into the function of genes and their relationship with diseases by directly visualizing their spatiotemporal behavior. As an emerging in-situ imaging tool, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated bioimaging can localize targets in living and fixed cells. CRISPR-mediated bioimaging has inherent advantages over the gold standard of fluorescent in-situ hybridization (FISH), including fast imaging, cost-effectiveness, and ease of preparation. Existing reviews have provided a detailed classification and overview of the principles of CRISPR-mediated bioimaging. However, the exploitation of potential clinical applicability of this bioimaging technique is still limited. Therefore, analyzing the potential value of CRISPR-mediated in-situ imaging is of great significance to the development of bioimaging. In this review, we initially discuss the available CRISPR-mediated imaging systems from the following aspects: summary of imaging substances, the design and optimization of bioimaging strategies, and factors influencing CRISPR-mediated in-situ detection. Subsequently, we highlight the potential of CRISPR-mediated bioimaging for application in biomedical research and clinical practice. Furthermore, we outline the current bottlenecks and future perspectives of CRISPR-based bioimaging. We believe that this review will facilitate the potential integration of bioimaging-related research with current clinical workflow.
Collapse
Affiliation(s)
- Meng Tian
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, People's Republic of China; Peking University Fifth School of Clinical Medicine, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, People's Republic of China; Peking University Fifth School of Clinical Medicine, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China.
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, People's Republic of China; Peking University Fifth School of Clinical Medicine, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Li Y, Matsunaga S. Various Strategies for Improved Signal-to-Noise Ratio in CRISPR-Based Live Cell Imaging. CYTOLOGIA 2023. [DOI: 10.1508/cytologia.88.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
8
|
Maloshenok LG, Abushinova GA, Ryazanova AY, Bruskin SA, Zherdeva VV. Visualizing the Nucleome Using the CRISPR–Cas9 System: From in vitro to in vivo. BIOCHEMISTRY (MOSCOW) 2023; 88:S123-S149. [PMID: 37069118 PMCID: PMC9940691 DOI: 10.1134/s0006297923140080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
One of the latest methods in modern molecular biology is labeling genomic loci in living cells using fluorescently labeled Cas protein. The NIH Foundation has made the mapping of the 4D nucleome (the three-dimensional nucleome on a timescale) a priority in the studies aimed to improve our understanding of chromatin organization. Fluorescent methods based on CRISPR-Cas are a significant step forward in visualization of genomic loci in living cells. This approach can be used for studying epigenetics, cell cycle, cellular response to external stimuli, rearrangements during malignant cell transformation, such as chromosomal translocations or damage, as well as for genome editing. In this review, we focused on the application of CRISPR-Cas fluorescence technologies as components of multimodal imaging methods for in vivo mapping of chromosomal loci, in particular, attribution of fluorescence signal to morphological and anatomical structures in a living organism. The review discusses the approaches to the highly sensitive, high-precision labeling of CRISPR-Cas components, delivery of genetically engineered constructs into cells and tissues, and promising methods for molecular imaging.
Collapse
Affiliation(s)
- Liliya G Maloshenok
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Gerel A Abushinova
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexandra Yu Ryazanova
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Sergey A Bruskin
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victoria V Zherdeva
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|