1
|
Liu Y, Liang Y, Yuhong J, Xin P, Han JL, Du Y, Yu X, Zhu R, Zhang M, Chen W, Ma Y. Advances in Nanotechnology for Enhancing the Solubility and Bioavailability of Poorly Soluble Drugs. Drug Des Devel Ther 2024; 18:1469-1495. [PMID: 38707615 PMCID: PMC11070169 DOI: 10.2147/dddt.s447496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
This manuscript offers a comprehensive overview of nanotechnology's impact on the solubility and bioavailability of poorly soluble drugs, with a focus on BCS Class II and IV drugs. We explore various nanoscale drug delivery systems (NDDSs), including lipid-based, polymer-based, nanoemulsions, nanogels, and inorganic carriers. These systems offer improved drug efficacy, targeting, and reduced side effects. Emphasizing the crucial role of nanoparticle size and surface modifications, the review discusses the advancements in NDDSs for enhanced therapeutic outcomes. Challenges such as production cost and safety are acknowledged, yet the potential of NDDSs in transforming drug delivery methods is highlighted. This contribution underscores the importance of nanotechnology in pharmaceutical engineering, suggesting it as a significant advancement for medical applications and patient care.
Collapse
Affiliation(s)
- Yifan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yushan Liang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jing Yuhong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Peng Xin
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jia Li Han
- School of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yongle Du
- School of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xinru Yu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Runhe Zhu
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Mingxun Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Wen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yingjie Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
2
|
Ribeiro GAC, de Lima SLS, Santos KER, Mendonça JP, Macena P, Pessanha EC, Cordeiro TC, Gardener J, Solórzano G, Fonsaca JES, Domingues SH, Dos Santos CC, Dourado AHB, Tanaka AA, da Silva AGM, Garcia MAS. Zn-doped MnO x nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors. DISCOVER NANO 2023; 18:147. [PMID: 38047970 PMCID: PMC10695906 DOI: 10.1186/s11671-023-03933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
MnOx-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward method was reported to produce Zn-doped MnOx nanowires with abundant defects and tunable small cross-sections, exhibiting an outstanding specific capacitance. More specifically, based on a facile hydrothermal strategy, zinc sites could be uniformly dispersed in the α-MnOx nanowires structure as a function of composition (0.3, 2.1, 4.3, and 7.6 wt.% Zn). Such a process avoided the formation of different crystalline phases during the synthesis. The reproducible method afforded uniform nanowires, in which the size of cross-sections decreased with the increase of Zn composition. Surprisingly, we found a volcano-type relationship between the storage performance and the Zn loading. In this case, we demonstrated that the highest performance material could be achieved by incorporating 2.1 wt.% Zn, exhibiting a remarkable specific capacitance of 1082.2 F.g-1 at a charge/discharge current density of 1.0 A g-1 in a 2.0 mol L-1 KOH electrolyte. The optimized material also afforded improved results for hybrid supercapacitors. Thus, the results presented herein shed new insights into preparing defective and controlled nanomaterials by a simple one-step method for energy storage applications.
Collapse
Affiliation(s)
- Geyse A C Ribeiro
- Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA), São Luís, MA, Brazil
| | - Scarllett L S de Lima
- Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Karolinne E R Santos
- Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA), São Luís, MA, Brazil
| | - Jhonatam P Mendonça
- Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA), São Luís, MA, Brazil
| | - Pedro Macena
- Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Emanuel C Pessanha
- Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Thallis C Cordeiro
- Centro de Ciências Exatas E Tecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, RJ, Brazil
| | - Jules Gardener
- Center for Nanoscale Systems, School of Engineering and Applied Sciences, Harvard University, Cambridge, USA
| | - Guilhermo Solórzano
- Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Jéssica E S Fonsaca
- Mackenzie Institute for Advanced Research in Graphene and Nanotechnologies - MackGraphe, Mackenzie Presbyterian University, São Paulo, SP, Brazil
| | - Sergio H Domingues
- Mackenzie Institute for Advanced Research in Graphene and Nanotechnologies - MackGraphe, Mackenzie Presbyterian University, São Paulo, SP, Brazil
| | | | - André H B Dourado
- São Carlos Institute of Chemistry, Universidade de São Paulo (USP), São Carlos, SP, Brazil
| | - Auro A Tanaka
- Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA), São Luís, MA, Brazil
| | - Anderson G M da Silva
- Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil.
| | - Marco A S Garcia
- Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA), São Luís, MA, Brazil.
| |
Collapse
|
3
|
Xu X, Wang J, Blankevoort N, Daaoub A, Sangtarash S, Shi J, Fang C, Yuan S, Chen L, Liu J, Yang Y, Sadeghi H, Hong W. Scaling of quantum interference from single molecules to molecular cages and their monolayers. Proc Natl Acad Sci U S A 2022; 119:e2211786119. [PMID: 36343232 PMCID: PMC9674264 DOI: 10.1073/pnas.2211786119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
The discovery of quantum interference (QI) is widely considered as an important advance in molecular electronics since it provides unique opportunities for achieving single-molecule devices with unprecedented performance. Although some pioneering studies suggested the presence of spin qubit coherence and QI in collective systems such as thin films, it remains unclear whether the QI can be transferred step-by-step from single molecules to different length scales, which hinders the application of QI in fabricating active molecular devices. Here, we found that QI can be transferred from a single molecule to their assemblies. We synthesized and investigated the charge transport through the molecular cages using 1,3-dipyridylbenzene (DPB) as a ligand block with a destructive quantum interference (DQI) effect and 2,5-dipyridylfuran (DPF) as a control building block with a constructive quantum interference (CQI) effect using both single-molecule break junction and large area junction techniques. Combined experiments and calculations revealed that both DQI and CQI had been transferred from the ligand blocks to the molecular cages and the monolayer thin film of the cages. Our work introduced QI effects from a ligand to the molecular cage comprising 732 atoms and even their monolayers, suggesting that the quantum interference could be scaled up within the phase-coherent distance.
Collapse
Affiliation(s)
- Xiaohui Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Juejun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Nickel Blankevoort
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Abdalghani Daaoub
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Sara Sangtarash
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Jie Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Chao Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Saisai Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Hatef Sadeghi
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| |
Collapse
|