1
|
Seong H, Nam W, Moon JH, Kim G, Jin Y, Yoo H, Jung T, Myung Y, Lee K, Choi J. Lithium Storage Mechanism: A Review of Perylene Diimide N-Substituted with a 1,2,4-Triazol-3-yl Ring for Organic Cathode Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58451-58461. [PMID: 38051908 DOI: 10.1021/acsami.3c14085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The demand for lithium-ion batteries (LIBs) has increased rapidly. However, commercial inorganic-based cathode materials have a low theoretical capacity and inherent disadvantages, such as high cost and toxicity. Redox-active organic cathodes with a high theoretical capacity, eco-friendly properties, and sustainability have been developed to overcome these limitations. Herein, perylene diimide derivatives N-substituted with 1,2,4-triazol-3-yl rings (PDI-3AT) were developed to apply as a cathode material for LIBs. The PDI-3AT cathode exhibited discharge capacities of 85.2 mAh g-1 (50 mA g-1 over 100 cycles) and 64.5 mAh g-1 (500 mA g-1 over 1000 cycles) with ratios to the theoretical capacities of 84 and 64%, respectively. Electrochemical kinetics analysis showed capacitive behaviors of the PDI-3AT cathode with efficient pathways for lithium-ion transport. Also, the activation step of the PDI-3AT cathode was demonstrated by improving the charge transfer resistance and lithium-ion diffusion coefficient during the initial few charge-discharge cycles. Furthermore, DFT calculations at the B3LYP/6-311+G** level and ex situ analysis of various charge states of the PDI-3AT electrode using attenuated total reflection Fourier transform infrared (ATR FT-IR) analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were conducted for the further study of the lithium-ion storage mechanism. The results showed that the lithiation process formed the lithium enolate (═C-O-Li) coordinated with the N atoms of the 1,2,4-triazole ring. It is expected that our study results will encourage the production and use of redox-active perylene diimide derivatives as next-generation cathode materials.
Collapse
Affiliation(s)
- Honggyu Seong
- Department of Chemistry and Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, South Korea
| | - Wonbin Nam
- Department of Chemistry and Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, South Korea
| | - Joon Ha Moon
- Department of Chemistry and Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, South Korea
| | - Geongil Kim
- Department of Chemistry and Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, South Korea
| | - Youngho Jin
- Department of Chemistry and Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, South Korea
| | - Hyerin Yoo
- Department of Chemistry and Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, South Korea
| | - Taejung Jung
- Department of Chemistry and Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, South Korea
| | - Yoon Myung
- Dongnam Regional Division, Korea Institute of Industrial Technology, Busan 46744, South Korea
| | - Kyounghoon Lee
- Department of Chemical education and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - Jaewon Choi
- Department of Chemistry and Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, South Korea
| |
Collapse
|