1
|
Das P, Roy A, Nandi A, Neogi I, Diskin-Posner Y, Marks V, Pinkas I, Amer S, Kozuch S, Firer M, Montag M, Grynszpan F. Thioxobimanes. J Org Chem 2023; 88:13475-13489. [PMID: 37712568 PMCID: PMC10563133 DOI: 10.1021/acs.joc.3c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 09/16/2023]
Abstract
Dioxobimanes, colloquially known as bimanes, are a well-established family of N-heterobicyclic compounds that share a characteristic core structure, 1,5-diazabicyclo[3.3.0]octadienedione, bearing two endocyclic carbonyl groups. By sequentially thionating these carbonyls in the syn and anti isomers of the known (Me,Me)dioxobimane, we were able to synthesize a series of thioxobimanes, representing the first heavy-chalcogenide bimane variants. These new compounds were extensively characterized spectroscopically and crystallographically, and their aromaticity was probed computationally. Their potential role as ligands for transition metals was demonstrated by synthesizing a representative gold(I)-thioxobimane complex.
Collapse
Affiliation(s)
- Partha
Jyoti Das
- Department
of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Ankana Roy
- Department
of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Ashim Nandi
- Department
of Chemistry, Ben-Gurion University, Beer Sheva 841051, Israel
| | - Ishita Neogi
- Department
of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Yael Diskin-Posner
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Vered Marks
- Department
of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Iddo Pinkas
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Sara Amer
- Department
of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Sebastian Kozuch
- Department
of Chemistry, Ben-Gurion University, Beer Sheva 841051, Israel
| | - Michael Firer
- Department
of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel
| | - Michael Montag
- Department
of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Flavio Grynszpan
- Department
of Chemical Sciences, Ariel University, Ariel 40700, Israel
| |
Collapse
|
2
|
Yang P, Jiang T, Cong Z, Liu G, Guo Y, Liu Y, Shi J, Hu L, Yin Y, Cai Y, Jiang G. Loss and Increase of the Electron Exchange Capacity of Natural Organic Matter during Its Reduction and Reoxidation: The Role of Quinone and Nonquinone Moieties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6744-6753. [PMID: 35522821 DOI: 10.1021/acs.est.1c08927] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Redox-active quinone and nonquinone moieties represent the electron exchange capacity (EEC) of natural organic matter (NOM), playing an important role in the electron transfer link of microbes and transformation of contaminants/metal minerals. However, the corresponding transformation of quinone/phenol and their respective influence on the EECs during reduction and reoxidation remain poorly characterized. Besides, it is still controversial whether nonquinones donate or accept electrons. Herein, we demonstrated that reoxidation of NOM after reduction can form new phenolic/quinone moieties, thus increasing the EEC. The assessment for the EEC, including the electron-donating capacity (EDC) and electron-accepting capacity (EAC), of nonquinones reflects the contribution of sulfur-containing moieties with considerable EDCs and EACs. In contrast, nitrogen-containing moieties donate negligible electrons even at Eh = +0.73 V. The contributions of both thiol and amine moieties to the EEC are greatly affected by adjacent functional groups. Meanwhile, aldehydes/ketones did not display an EAC during the electron transfer process of NOM. Furthermore, substantially increased EDC at Eh from +0.61 to +0.73 V could not be fully explained using thiol and phenolic moieties, suggesting the contribution of unknown moieties with high oxidation potential. The overall findings suggest that the roles of new quinones/phenol (derived from the addition of oxygen to condensed aromatic/lignin-like components) during redox dynamic cycling and thiol species should be considered in assessing the electron transfer processes of NOM.
Collapse
Affiliation(s)
- Peijie Yang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Zhiyuan Cong
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|