1
|
Kang X, Zhao T, Song Y, Zhang J, Yuan T, Han Q. Evaluation of the activity of antimicrobial peptides against bacterial vaginosis. Open Life Sci 2024; 19:20220927. [PMID: 39091626 PMCID: PMC11292031 DOI: 10.1515/biol-2022-0927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
New drugs for the treatment of bacterial vaginosis (BV) are yet to be developed due to concerns that they may contribute to the increase in antibiotic resistance in BV. Antimicrobial peptides (AMPs) are one of the most promising options for next-generation antibiotics. In this study, we investigated the bacteriostatic activity of the AMPs Pexiganan, plectasin, melittin, and cathelicidin-DM against Gram-negative and Gram-positive bacteria both in vitro and in a mouse model of BV infection. The results showed that Pexiganan, melittin, and cathelicidin-DM had significant antibacterial activity against both Gram-negative and Gram-positive bacteria. AMPs have great potential for clinical application in the treatment of vaginitis, and this study provides an experimental basis for their use in the active immunoprophylaxis of BV.
Collapse
Affiliation(s)
- Xuning Kang
- College of Life Science and Technology & Affiliated Hospital, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Ting Zhao
- College of Life Science and Technology & Affiliated Hospital, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yuzhu Song
- College of Life Science and Technology & Affiliated Hospital, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jinyang Zhang
- College of Life Science and Technology & Affiliated Hospital, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Tao Yuan
- College of Life Science and Technology & Affiliated Hospital, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Qinqin Han
- College of Life Science and Technology & Affiliated Hospital, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
2
|
Shiabiev I, Pysin D, Akhmedov A, Babaeva O, Babaev V, Lyubina A, Voloshina A, Petrov K, Padnya P, Stoikov I. Towards Antibacterial Agents: Synthesis and Biological Activity of Multivalent Amide Derivatives of Thiacalix[4]arene with Hydroxyl and Amine Groups. Pharmaceutics 2023; 15:2731. [PMID: 38140072 PMCID: PMC10747887 DOI: 10.3390/pharmaceutics15122731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Antimicrobial resistance to modern antibiotics stimulates the search for new ways to synthesize and modify antimicrobial drugs. The development of synthetic approaches that can easily change different fragments of the molecule is a promising solution to this problem. In this work, a synthetic approach was developed to obtain multivalent thiacalix[4]arene derivatives containing different number of amine and hydroxyl groups. A series of macrocyclic compounds in cone, partial cone, and 1,3-alternate stereoisomeric forms containing -NHCH2CH2R (R = NH2, N(CH3)2, and OH) and -N(CH2CH2OH)2 terminal fragments, and their model non-macrocyclic analogues were obtained. The antibacterial activity against Gram-positive (Staphylococcus aureus, Bacillus cereus, and Enterococcus faecalis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial strains and cytotoxicity of the obtained compounds were studied. Structure-activity relationships were established: (1) the macrocyclic compounds had high antibacterial activity, while the monomeric compounds had low activity; (2) the compounds in cone and partial cone conformations had better antibacterial activity compared to the compounds in 1,3-alternate stereoisomeric form; (3) the macrocyclic compounds containing -NHCH2CH2N(CH3)2 terminal fragments had the highest antibacterial activity; (4) introduction of additional terminal hydroxyl groups led to a significant decrease in antibacterial activity; (5) the compounds in partial cone conformation had significant bactericidal activity against all studied cell strains; the best selectivity was observed for the compounds in cone conformation. The mechanism of antibacterial activity of lead compounds with terminal fragments -NHCH2CH2N(CH3)2 was proved using model negatively charged POPG vesicles, i.e., the addition of these compounds led to an increase in the size and zeta potential of the vesicles. The obtained results open up the possibility of using the synthesized macrocyclic compounds as promising antibacterial agents.
Collapse
Affiliation(s)
- Igor Shiabiev
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia; (I.S.); (D.P.); (A.A.)
| | - Dmitry Pysin
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia; (I.S.); (D.P.); (A.A.)
| | - Alan Akhmedov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia; (I.S.); (D.P.); (A.A.)
| | - Olga Babaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia; (O.B.); (V.B.); (A.L.); (A.V.); (K.P.)
| | - Vasily Babaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia; (O.B.); (V.B.); (A.L.); (A.V.); (K.P.)
| | - Anna Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia; (O.B.); (V.B.); (A.L.); (A.V.); (K.P.)
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia; (O.B.); (V.B.); (A.L.); (A.V.); (K.P.)
| | - Konstantin Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia; (O.B.); (V.B.); (A.L.); (A.V.); (K.P.)
| | - Pavel Padnya
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia; (I.S.); (D.P.); (A.A.)
| | - Ivan Stoikov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia; (I.S.); (D.P.); (A.A.)
| |
Collapse
|
3
|
Mourer M, Regnouf-de-Vains JB, Duval RE. Functionalized Calixarenes as Promising Antibacterial Drugs to Face Antimicrobial Resistance. Molecules 2023; 28:6954. [PMID: 37836797 PMCID: PMC10574364 DOI: 10.3390/molecules28196954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Since the discovery of polyphenolic resins 150 years ago, the study of polymeric compounds named calix[n]arene has continued to progress, and those skilled in the art perfectly know now how to modulate this phenolic ring. Consequently, calix[n]arenes are now used in a large range of applications and notably in therapeutic fields. In particular, the calix[4]arene exhibits multiple possibilities for regioselective polyfunctionalization on both of its rims and offers researchers the possibility of precisely tuning the geometry of their structures. Thus, in the crucial research of new antibacterial active ingredients, the design of calixarenes finds its place perfectly. This review provides an overview of the work carried out in this aim towards the development of intrinsically active prodrogues or metallic calixarene complexes. Out of all the work of the community, there are some excellent activities emerging that could potentially place these original structures in a very good position for the development of new active ingredients.
Collapse
Affiliation(s)
- Maxime Mourer
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France;
| | | | - Raphaël E. Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France;
- ABC Platform®, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
4
|
Mironova D, Makarov E, Bilyukova I, Akyol K, Sultanova E, Evtugyn V, Davletshin D, Gilyazova E, Bulatov E, Burilov V, Solovieva S, Antipin I. Aggregation, Cytotoxicity and DNA Binding in a Series of Calix[4]arene Amphiphile Containing Aminotriazole Groups. Pharmaceuticals (Basel) 2023; 16:ph16050699. [PMID: 37242482 DOI: 10.3390/ph16050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The present work focuses on the study of the aggregation and complexing properties of calixarenes as potential DNA condensation agents for gene delivery. In the current study, 1,4-triazole derivatives of calix[4]arenes 7 and 8 containing monoammonium fragments were synthesized. The synthesized compound's structure was characterized by using various spectroscopic techniques (FTIR, HRESI MS, ¹H NMR and ¹³C NMR). The interactions between a series of calix[4]arene-containing aminotriazole groups (triazole-containing macrocycles with diethylenetriammonium fragments (3 and 4) and triazole-containing macrocycles with monoammonium fragments (7 and 8)) and calf thymus DNA were carried out via UV absorption, fluorescence spectroscopy, dynamic light scattering and zeta potential measurements. The role of the binding forces of calixarene-DNA complexes was analyzed. Photophysical and morphological studies revealed the interaction of the calixarenes 3, 4 and 8 with ct-DNA, which transformed the fibrous structure of ct-DNA to completely condensed compact structures that are 50 nm in diameter. The cytotoxic properties of calixarenes 3, 4, 7 and 8 against cancerous cells (MCF7, PC-3) as well as a healthy cell line (HSF) were investigated. Compound 4 was found to have the highest toxic effect on MCF7 breast adenocarcinoma (IC50 3.3 μM).
Collapse
Affiliation(s)
- Diana Mironova
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia
| | - Egor Makarov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia
| | - Islamiya Bilyukova
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia
| | - Kevser Akyol
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia
| | - Elsa Sultanova
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia
| | - Vladimir Evtugyn
- Interdisciplinary Center for Analytical Microscopy, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia
| | - Damir Davletshin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia
| | - Elvina Gilyazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia
| | - Vladimir Burilov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia
| | - Svetlana Solovieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Igor Antipin
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia
| |
Collapse
|