1
|
Focke K, De Santis M, Wolter M, Martinez B JA, Vallet V, Pereira Gomes AS, Olejniczak M, Jacob CR. Interoperable workflows by exchanging grid-based data between quantum-chemical program packages. J Chem Phys 2024; 160:162503. [PMID: 38686818 DOI: 10.1063/5.0201701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Quantum-chemical subsystem and embedding methods require complex workflows that may involve multiple quantum-chemical program packages. Moreover, such workflows require the exchange of voluminous data that go beyond simple quantities, such as molecular structures and energies. Here, we describe our approach for addressing this interoperability challenge by exchanging electron densities and embedding potentials as grid-based data. We describe the approach that we have implemented to this end in a dedicated code, PyEmbed, currently part of a Python scripting framework. We discuss how it has facilitated the development of quantum-chemical subsystem and embedding methods and highlight several applications that have been enabled by PyEmbed, including wave-function theory (WFT) in density-functional theory (DFT) embedding schemes mixing non-relativistic and relativistic electronic structure methods, real-time time-dependent DFT-in-DFT approaches, the density-based many-body expansion, and workflows including real-space data analysis and visualization. Our approach demonstrates, in particular, the merits of exchanging (complex) grid-based data and, in general, the potential of modular software development in quantum chemistry, which hinges upon libraries that facilitate interoperability.
Collapse
Affiliation(s)
- Kevin Focke
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Matteo De Santis
- CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, Univ. Lille, F-59000 Lille, France
| | - Mario Wolter
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Jessica A Martinez B
- CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, Univ. Lille, F-59000 Lille, France
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, USA
| | - Valérie Vallet
- CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, Univ. Lille, F-59000 Lille, France
| | | | - Małgorzata Olejniczak
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
2
|
Alías-Rodríguez M, Bonfrate S, Park W, Ferré N, Choi CH, Huix-Rotllant M. Solvent Effects and pH Dependence of the X-ray Absorption Spectra of Proline from Electrostatic Embedding Quantum Mechanics/Molecular Mechanics and Mixed-Reference Spin-Flip Time-dependent Density-Functional Theory. J Phys Chem A 2023. [PMID: 38019644 DOI: 10.1021/acs.jpca.3c05070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The accurate description of solvent effects on X-ray absorption spectra (XAS) is fundamental for comparing the simulated spectra with experiments in solution. Currently, few protocols exist that can efficiently reproduce the effects of the solute/solvent interactions on XAS. Here, we develop an efficient and accurate theoretical protocol for simulating the solvent effects on XAS. The protocol combines electrostatic embedding QM/MM based on electrostatic potential fitted operators for describing the solute/solvent interactions and mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT) for simulating accurate XAS spectra. To demonstrate the capabilities of our protocol, we compute the X-ray absorption of neutral proline in the gas phase and ionic proline in water in all relevant K-edges, showing excellent agreement with experiments. We show that states represented by core to π* transitions are almost unaffected by the interaction with water, whereas the core to σ* transitions are more impacted by the fluctuation of proline structure and the electrostatic interaction with the solvent. Finally, we reconstruct the pH-dependent XAS of proline in solution, determining that the N K-edge can be used to distinguish its three protonation states.
Collapse
Affiliation(s)
| | | | - Woojin Park
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Nicolas Ferré
- Aix-Marseille Univ, CNRS, ICR, Marseille 13013, France
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | | |
Collapse
|
3
|
De Santis M, Sorbelli D, Vallet V, Gomes AS, Storchi L, Belpassi L. Frozen-Density Embedding for Including Environmental Effects in the Dirac-Kohn-Sham Theory: An Implementation Based on Density Fitting and Prototyping Techniques. J Chem Theory Comput 2022; 18:5992-6009. [PMID: 36172757 PMCID: PMC9558305 DOI: 10.1021/acs.jctc.2c00499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/28/2022]
Abstract
Frozen density embedding (FDE) represents an embedding scheme in which environmental effects are included from first-principles calculations by considering the surrounding system explicitly by means of its electron density. In the present paper, we extend the full four-component relativistic Dirac-Kohn-Sham (DKS) method, as implemented in the BERTHA code, to include environmental and confinement effects with the FDE scheme (DKS-in-DFT FDE). The implementation, based on the auxiliary density fitting techniques, has been enormously facilitated by BERTHA's python API (PyBERTHA), which facilitates the interoperability with other FDE implementations available through the PyADF framework. The accuracy and numerical stability of this new implementation, also using different auxiliary fitting basis sets, has been demonstrated on the simple NH3-H2O system, in comparison with a reference nonrelativistic implementation. The computational performance has been evaluated on a series of gold clusters (Aun, with n = 2, 4, 8) embedded into an increasing number of water molecules (5, 10, 20, 40, and 80 water molecules). We found that the procedure scales approximately linearly both with the size of the frozen surrounding environment (consistent with the underpinnings of the FDE approach) and with the size of the active system (in line with the use of density fitting). Finally, we applied the code to a series of heavy (Rn) and super-heavy elements (Cn, Fl, Og) embedded in a C60 cage to explore the confinement effect induced by C60 on their electronic structure. We compare the results from our simulations, with respect to more-approximate models employed in the atomic physics literature. Our results indicate that the specific interactions described by FDE are able to improve upon the cruder approximations currently employed, and, thus, they provide a basis from which to generate more-realistic radial potentials for confined atoms.
Collapse
Affiliation(s)
- Matteo De Santis
- Univ.
Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Diego Sorbelli
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Istituto
di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle
Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Valérie Vallet
- Univ.
Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | | | - Loriano Storchi
- Istituto
di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle
Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Dipartimento
di Farmacia, Università degli Studi
‘G. D’Annunzio’, Via dei Vestini 31, 66100 Chieti, Italy
| | - Leonardo Belpassi
- Istituto
di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle
Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|