1
|
Thanetchaiyakup A, Sadek M, Bati G, Xiao Y, Wang X, Yang J, Liu Z, Wang SY, Soo HS. Metal Halide Perovskites for Photocatalysis: Performance and Mechanistic Studies. Chem Asian J 2024; 19:e202400787. [PMID: 39261288 DOI: 10.1002/asia.202400787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Metal halide perovskites, both lead-based and lead-free variants, have emerged as highly versatile materials with widespread applications across various fields, including photovoltaics, optoelectronics, and photocatalysis. This review provides a succinct overview of the recent advancements in the utilization of lead and lead-free halide perovskites specifically in photocatalysis. We explore the diverse range of photocatalytic reactions enabled by metal halide perovskites, including organic transformations, carbon dioxide reduction, pollutant degradation, and hydrogen production. We highlight key developments, mechanistic insights, and challenges in the field, offering our perspectives on the future research directions and potential applications. By summarizing recent findings from the literature, this review aims to provide a timely resource for researchers interested in harnessing the full potential of metal halide perovskites for sustainable and efficient photocatalytic processes.
Collapse
Affiliation(s)
- Adisak Thanetchaiyakup
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Mansour Sadek
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Gabor Bati
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yonghao Xiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xingyu Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou, 215123, P. R. China
| | - Jingcheng Yang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou, 215123, P. R. China
| | - Zhenpeng Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou, 215123, P. R. China
| | - Shun-Yi Wang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou, 215123, P. R. China
| | - Han Sen Soo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
2
|
Yan C, Qian Y, Liao Z, Le Z, Fan Q, Zhu H, Xie Z. Recent progress of metal halide perovskite materials in heterogeneous photocatalytic organic reactions. Photochem Photobiol Sci 2024; 23:1393-1415. [PMID: 38850494 DOI: 10.1007/s43630-024-00599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Photocatalytic technology is widely regarded as an important way to utilize solar energy and achieve carbon neutrality, which has attracted considerable attentions in various fields over the past decades. Metal halide perovskites (MHPs) are recognized as "superstar" materials due to their exceptional photoelectric properties, readily accessible and tunable structure, which made them intensively studied in solar cells, light-emitting diodes, and solar energy conversion fields. Since 2018, increased attention has been focused on applying the MHPs as a heterogeneous visible light photocatalyst in catalyzing organic synthesis reactions. In this review, we present an overview of photocatalytic technology and principles of heterogeneous photocatalysis before delving into the structural characteristics, stability, and classifications of MHPs. We then focus on recent developments of MHPs in photocatalyzing various organic synthesis reactions, such as oxidation, cyclization, C-C coupling etc., based on their classifications and reported reaction types. Finally, we discuss the main limitations and prospects regarding the application of metal halide perovskites in organic synthesis.
Collapse
Affiliation(s)
- Chunpei Yan
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Yan Qian
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Zhaohong Liao
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Zhanggao Le
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Qiangwen Fan
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China.
| | - Haibo Zhu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
3
|
Huang Y, Yu J, Wu Z, Li B, Li M. All-inorganic lead halide perovskites for photocatalysis: a review. RSC Adv 2024; 14:4946-4965. [PMID: 38327811 PMCID: PMC10847908 DOI: 10.1039/d3ra07998h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Nowadays, environmental pollution and the energy crisis are two significant concerns in the world, and photocatalysis is seen as a key solution to these issues. All-inorganic lead halide perovskites have been extensively utilized in photocatalysis and have become one of the most promising materials in recent years. The superior performance of all-inorganic lead halide perovskites distinguish them from other photocatalysts. Since pure lead halide perovskites typically have shortcomings, such as low stability, poor active sites, and ineffective carrier extraction, that restrict their use in photocatalytic reactions, it is crucial to enhance their photocatalytic activity and stability. Huge progress has been made to deal with these critical issues to enhance the effects of all-inorganic lead halide perovskites as efficient photocatalysts in a wide range of applications. In this manuscript, the synthesis methods of all-inorganic lead halide perovskites are discussed, and promising strategies are proposed for superior photocatalytic performance. Moreover, the research progress of photocatalysis applications are summarized; finally, the issues of all-inorganic lead halide perovskite photocatalytic materials at the current state and future research directions are also analyzed and discussed. We hope that this manuscript will provide novel insights to researchers to further promote the research on photocatalysis based on all-inorganic lead halide perovskites.
Collapse
Affiliation(s)
- Yajie Huang
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Jiaxing Yu
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Zhiyuan Wu
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Borui Li
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Ming Li
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| |
Collapse
|
4
|
Jagadeeswararao M, Galian RE, Pérez-Prieto J. Photocatalysis Based on Metal Halide Perovskites for Organic Chemical Transformations. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:94. [PMID: 38202549 PMCID: PMC10780689 DOI: 10.3390/nano14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Heterogeneous photocatalysts incorporating metal halide perovskites (MHPs) have garnered significant attention due to their remarkable attributes: strong visible-light absorption, tuneable band energy levels, rapid charge transfer, and defect tolerance. Additionally, the promising optical and electronic properties of MHP nanocrystals can be harnessed for photocatalytic applications through controlled crystal structure engineering, involving composition tuning via metal ion and halide ion variations, dimensional tuning, and surface chemistry modifications. Combination of perovskites with other materials can improve the photoinduced charge separation and charge transfer, building heterostructures with different band alignments, such as type-II, Z-scheme, and Schottky heterojunctions, which can fine-tune redox potentials of the perovskite for photocatalytic organic reactions. This review delves into the activation of organic molecules through charge and energy transfer mechanisms. The review further investigates the impact of crystal engineering on photocatalytic activity, spanning a diverse array of organic transformations, such as C-X bond formation (X = C, N, and O), [2 + 2] and [4 + 2] cycloadditions, substrate isomerization, and asymmetric catalysis. This study provides insights to propel the advancement of metal halide perovskite-based photocatalysts, thereby fostering innovation in organic chemical transformations.
Collapse
Affiliation(s)
| | - Raquel E. Galian
- Institute of Molecular Science, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain;
| | - Julia Pérez-Prieto
- Institute of Molecular Science, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain;
| |
Collapse
|
5
|
Gebruers M, Wang C, Saha RA, Xie Y, Aslam I, Sun L, Liao Y, Yang X, Chen T, Yang MQ, Weng B, Roeffaers MBJ. Crystal phase engineering of Ru for simultaneous selective photocatalytic oxidations and H 2 production. NANOSCALE 2023; 15:2417-2424. [PMID: 36651352 DOI: 10.1039/d2nr06447b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Noble metal nanoparticles are often used as cocatalysts to enhance the photocatalytic efficiency. While the effect of cocatalyst nanoparticle size and shape has widely been explored, the effect of the crystal phase is largely overlooked. In this work, we investigate the effect of Ru nanoparticle crystal phase, specifically regular hexagonal close-packed (hcp) and allotropic face-centered cubic (fcc) crystal phases, as cocatalyst decorated onto the surface of TiO2 photocatalysts. As reference photocatalytic reaction the simultaneous photocatalytic production of benzaldehyde (BAD) and H2 from benzyl alcohol was chosen. Both the fcc Ru/TiO2 and hcp Ru/TiO2 composites exhibit enhanced BAD and H2 production rates compared to pristine TiO2 due to the formation of a Schottky barrier promoting the photogenerated charge separation. Moreover, a 1.9-fold photoactivity enhancement of the fcc Ru/TiO2 composite is achieved as compared to the hcp Ru/TiO2 composite, which is attributed to the fact that the fcc Ru NPs are more efficient in facilitating the charge transfer as compared to hcp Ru NPs, thus inhibiting the recombination of electron-hole pairs and enhancing the overall photoactivity.
Collapse
Affiliation(s)
- Michaël Gebruers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Chunhua Wang
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Rafikul A Saha
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Yangshan Xie
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Imran Aslam
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Li Sun
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Yuhe Liao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2, Nengyuan, Road, Tianhe District, Guangzhou 510641, P.R. China
| | - Xuhui Yang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P.R. China
| | - Taoran Chen
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P.R. China
| | - Min-Quan Yang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P.R. China
| | - Bo Weng
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Maarten B J Roeffaers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
6
|
Chen T, Weng B, Lu S, Zhu H, Chen Z, Shen L, Roeffaers MBJ, Yang MQ. Photocatalytic Anaerobic Dehydrogenation of Alcohols over Metal Halide Perovskites: A New Acid-Free Scheme for H 2 Production. J Phys Chem Lett 2022; 13:6559-6565. [PMID: 35830601 DOI: 10.1021/acs.jpclett.2c01501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic H2 evolution from haloid acid (HX) solution by metal halide perovskites (MHPs) has been intensively investigated; however, the corrosive acid solution severely restricts its practical operability. Therefore, developing acid-free schemes for H2 evolution using MHPs is highly desired. Here, we investigate the photocatalytic anaerobic dehydrogenation of alcohols over a series of MHPs (APbX3, A = Cs+, CH3NH3+ (MA), CH(NH2)2+ (FA); X = Cl-, Br-, I-) to simultaneously produce H2 and aldehydes. Via the coassembly of Pt and rGO nanosheets on MAPbBr3 microcrystals, the optimal MAPbBr3/rGO-Pt reaches a H2 evolution rate of 3150 μmol g-1 h-1 under visible light irradiation (780 nm ≥ λ ≥ 400 nm), which is more than 105-fold higher than pure MAPbBr3 (30 μmol g-1 h-1). The present work not only brings new ample opportunities toward photocatalytic H2 evolution but also opens up new avenues for more effective utilization of MHPs in photocatalysis.
Collapse
Affiliation(s)
- Taoran Chen
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Bo Weng
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Suwei Lu
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Haixia Zhu
- Hunan Key Laboratory of Nanophononics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China
| | - Zhihui Chen
- Hunan Key Laboratory of Nanophononics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China
| | - Lijuan Shen
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Maarten B J Roeffaers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Min-Quan Yang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|