1
|
Rodríguez-Valdez G, Martínez-Cerda ME, Mejía-Reyes JG, Tapia-Juárez M, Olmos-Orizaba E, Cortés-Rojo C, Cortés-García CJ, Contreras-Celedón CA, Solorio-Alvarado CR, Chacón-García L. A Metastable Semiquinone Molecular Switch Modulated by Ascorbate/O 2: A Study from a System Far-From-Equilibrium to Biological Assays in Mitochondria. Chembiochem 2024; 25:e202400401. [PMID: 38981854 DOI: 10.1002/cbic.202400401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
A molecular switch based on the metastable radical anion derived from a substituted heteroaryl quinone is described. Pyrrolyl quinone thiocyanate (PQ 9) showed an interaction with the fluoride anion that was visible to the naked eye and quantified by UV/vis and 1H and 13 C NMR. The metastable quinoid species formed by the interaction with F- ("ON" state) showed a molecular switching effect autocontrolled by the presence of ascorbate ("OFF" state) and back to the "ON" state by an autooxidation process, measured by visible and UV/vis spectroscopy. Due to its out-of-equilibrium properties and the exchange of matter and energy, a dissipative structural behaviour is proposed. Considering its similarity to the mechanism of coenzyme Q in oxidative phosphophorylation, PQ 9 was evaluated on Saccharomyces cerevisiae mitochondrial function for inhibition of complexes II, III and IV, reactive oxygen species (ROS) production, catalase activity and lipid peroxidation. The results showed that PQ 9 inhibited complex III activity as well as the activity of all electron transport chain (ETC) complexes. In addition, PQ 9 reduced ROS production and catalase activity in yeast. The results suggest that PQ 9 may have potential applications as a new microbicidal compound by inducing ETC dysfunction.
Collapse
Affiliation(s)
- Gabriela Rodríguez-Valdez
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Marlen E Martínez-Cerda
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Jisell G Mejía-Reyes
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Melissa Tapia-Juárez
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Eridani Olmos-Orizaba
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Christian Cortés-Rojo
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Carlos J Cortés-García
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Claudia A Contreras-Celedón
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Cesar R Solorio-Alvarado
- División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Campus Guanajuato, Noria Alta S/N, 36050, Guanajuato, Mexico
| | - Luis Chacón-García
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| |
Collapse
|
2
|
Meleschko D, Palui P, Gomila RM, Schnakenburg G, Filippou AC, Frontera A, Bismuto A. Light-Dependent Reactivity of Heavy Pnictogen Double Bonds. Angew Chem Int Ed Engl 2024; 63:e202405400. [PMID: 38727609 DOI: 10.1002/anie.202405400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Indexed: 06/16/2024]
Abstract
The chemistry of light dipnictenes has been widely investigated in the last century with remarkable achievements especially for azobenzene derivatives. In contrast, distibenes and dibismuthenes are relatively rare and show very limited reactivity. Herein, we have designed a protocol using visible light to enhance the reactivity of heavy dipnictenes. Exploiting the distinctive π-π* transition, we have been able to isolate unique examples of dipnictene-cobalt complexes. The reactivity of the distibene complex was further exploited using red light in the presence of a diazoolefin to access an unusual four-membered bicyclo[1.1.0]butane analog, containing only a single carbon atom. These findings set the bases to a conceptually new strategy in heavy element double bonds chemistry where visible light is at the front seat of bond activation.
Collapse
Affiliation(s)
- Daniel Meleschko
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Prasenjit Palui
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Rosa M Gomila
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122, Palma (Baleares), Spain
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Alexander C Filippou
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122, Palma (Baleares), Spain
| | - Alessandro Bismuto
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| |
Collapse
|
3
|
Ofodum NM, Qi Q, Chandradat R, Warfle T, Lu X. Advancing Dynamic Polymer Mechanochemistry through Synergetic Conformational Gearing. J Am Chem Soc 2024; 146:17700-17711. [PMID: 38888499 DOI: 10.1021/jacs.4c02066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Harnessing mechanical force to modulate material properties and enhance biomechanical functions is essential for advancing smart materials and bioengineering. Polymer mechanochemistry provides an emerging toolkit for exploring unconventional chemical transformations and modulating molecular structures through mechanical force. One of the key challenges is developing innovative force-sensing mechanisms for precise and in situ force detection. This study introduces mDPAC, a dynamic and sensitive mechanophore, demonstrating its mechanochromic properties through synergetic conformational gearing. Its unique mechanoresponsive mechanism is based on the simultaneous conformational synergy between its phenazine and phenyl moieties, facilitated by a worm-gear-like structure. We confirm mDPAC's complex mechanochemical response and elucidate its mechanotransduction mechanism through our experimental data and comprehensive simulations. The compatibility of mDPAC with hydrogels is particularly notable, highlighting its potential for applications in aqueous biological environments as a dynamic force sensor. Moreover, mDPAC's multicolored mechanochromic responses facilitate direct force sensing and visual detection, paving the way for precise and real-time mechanical force sensing in bulk materials.
Collapse
Affiliation(s)
- Nnamdi M Ofodum
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave, Potsdam, New York 13699, United States
| | - Qingkai Qi
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave, Potsdam, New York 13699, United States
| | - Richard Chandradat
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave, Potsdam, New York 13699, United States
| | - Theodore Warfle
- Department of Chemical and Biomolecular Engineering, Clarkson University, 8 Clarkson Ave, Potsdam, New York 13699, United States
| | - Xiaocun Lu
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave, Potsdam, New York 13699, United States
| |
Collapse
|
4
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
5
|
Das P, Grinalds NJ, Ghiviriga I, Abboud KA, Dobrzycki Ł, Xue J, Castellano RK. Dicyanorhodanine-Pyrrole Conjugates for Visible Light-Driven Quantitative Photoswitching in Solution and the Solid State. J Am Chem Soc 2024; 146:11932-11943. [PMID: 38629510 DOI: 10.1021/jacs.4c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Small molecule photoswitches capable of toggling between two distinct molecular states in response to light are versatile tools to monitor biological processes, control photochemistry, and design smart materials. In this work, six novel dicyanorhodanine-based pyrrole-containing photoswitches are reported. The molecular design avails both the Z and E isomers from synthesis, where each can be isolated using chromatographic techniques. Inter- and intramolecular hydrogen bonding (H-bonding) interactions available to the E and Z isomers, respectively, uniquely impart thermal stability to each isomer over long time periods. Photoisomerization could be assessed by solution NMR and UV-vis spectroscopic techniques along with complementary ground- and excited-state computational studies, which show good agreement. Quantitative E → Z isomerization occurs upon 523 nm irradiation of the parent compound (where R = H) in solution, whereas Z → E isomerization using 404 nm irradiation offers a photostationary state (PSS) ratio of 84/16 (E/Z). Extending the π-conjugation of the pyrrole unit (where R = p-C6H4-OMe) pushes the maximum absorption to the yellow-orange region of the visible spectrum and allows bidirectional quantitative isomerization with 404 and 595 nm excitation. Comparator molecules have been prepared to report how the presence or absence of H-bonding affects the photoswitching behavior. Finally, studies of the photoswitches in neat films and photoinactive polymer matrices reveal distinctive structural and optical properties of the Z and E isomers and ultimately afford reversible photoswitching to spectrally unique PSSs using visible light sources including the Sun.
Collapse
Affiliation(s)
- Parag Das
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Nathan J Grinalds
- Department of Materials Science and Engineering, University of Florida, P. O. Box 116400, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Khalil A Abboud
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Łukasz Dobrzycki
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Jiangeng Xue
- Department of Materials Science and Engineering, University of Florida, P. O. Box 116400, Gainesville, Florida 32611, United States
| | - Ronald K Castellano
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
6
|
Bartkowski M, Zhou Y, Nabil Amin Mustafa M, Eustace AJ, Giordani S. CARBON DOTS: Bioimaging and Anticancer Drug Delivery. Chemistry 2024; 30:e202303982. [PMID: 38205882 DOI: 10.1002/chem.202303982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Cancer, responsible for approximately 10 million lives annually, urgently requires innovative treatments, as well as solutions to mitigate the limitations of traditional chemotherapy, such as long-term adverse side effects and multidrug resistance. This review focuses on Carbon Dots (CDs), an emergent class of nanoparticles (NPs) with remarkable physicochemical and biological properties, and their burgeoning applications in bioimaging and as nanocarriers in drug delivery systems for cancer treatment. The review initiates with an overview of NPs as nanocarriers, followed by an in-depth look into the biological barriers that could affect their distribution, from barriers to administration, to intracellular trafficking. It further explores CDs' synthesis, including both bottom-up and top-down approaches, and their notable biocompatibility, supported by a selection of in vitro, in vivo, and ex vivo studies. Special attention is given to CDs' role in bioimaging, highlighting their optical properties. The discussion extends to their emerging significance as drug carriers, particularly in the delivery of doxorubicin and other anticancer agents, underscoring recent advancements and challenges in this field. Finally, we showcase examples of other promising bioapplications of CDs, emergent owing to the NPs flexible design. As research on CDs evolves, we envisage key challenges, as well as the potential of CD-based systems in bioimaging and cancer therapy.
Collapse
Affiliation(s)
- Michał Bartkowski
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
| | - Yingru Zhou
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | | | | | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
| |
Collapse
|
7
|
Rybalkin VP, Zmeeva SY, Popova LL, Dubonosova IV, Karlutova OY, Demidov OP, Dubonosov AD, Bren VA. Synthesis of photo- and ionochromic N-acylated 2-(aminomethylene)benzo[ b]thiophene-3(2 Н)-ones with a terminal phenanthroline group. Beilstein J Org Chem 2024; 20:552-560. [PMID: 38505235 PMCID: PMC10949002 DOI: 10.3762/bjoc.20.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
A series of novel photo- and ionochromic N-acylated 2-(aminomethylene)benzo[b]thiophene-3(2Н)-ones with a terminal phenanthroline receptor substituent was synthesized. Upon irradiation in acetonitrile or DMSO with light of 436 nm, they underwent Z-E isomerization of the C=C bond, followed by very fast N→O migration of the acyl group and the formation of nonemissive O-acylated isomers. These isomers were isolated preparatively and fully characterized by IR, 1H, and 13C NMR spectroscopy as well as HRMS and XRD methods. The reverse thermal reaction was catalyzed by protonic acids. N-Acylated compounds exclusively with Fe2+ formed nonfluorescent complexes with a contrast naked-eye effect: a color change of the solutions from yellow to dark orange. Subsequent selective interaction with AcO- led to the restoration of the initial absorption and emission properties. Thus, the obtained compounds represent dual-mode "on-off-on" switches of optical and fluorescent properties under sequential exposure to light and H+ or sequential addition of Fe2+ and AcO- ions.
Collapse
Affiliation(s)
- Vladimir P Rybalkin
- Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don 344006, Russian Federation
| | - Sofiya Yu Zmeeva
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don 344090, Russian Federation
| | - Lidiya L Popova
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don 344090, Russian Federation
| | - Irina V Dubonosova
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don 344090, Russian Federation
| | - Olga Yu Karlutova
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don 344090, Russian Federation
| | - Oleg P Demidov
- North Caucasus Federal University, Stavropol 355009, Russian Federation
| | - Alexander D Dubonosov
- Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don 344006, Russian Federation
| | - Vladimir A Bren
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don 344090, Russian Federation
| |
Collapse
|
8
|
Johnson TG, Langton MJ. Molecular Machines For The Control Of Transmembrane Transport. J Am Chem Soc 2023; 145:27167-27184. [PMID: 38062763 PMCID: PMC10740008 DOI: 10.1021/jacs.3c08877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Nature embeds some of its molecular machinery, including ion pumps, within lipid bilayer membranes. This has inspired chemists to attempt to develop synthetic analogues to exploit membrane confinement and transmembrane potential gradients, much like their biological cousins. In this perspective, we outline the various strategies by which molecular machines─molecular systems in which a nanomechanical motion is exploited for function─have been designed to be incorporated within lipid membranes and utilized to mediate transmembrane ion transport. We survey molecular machines spanning both switches and motors, those that act as mobile carriers or that are anchored within the membrane, mechanically interlocked molecules, and examples that are activated in response to external stimuli.
Collapse
Affiliation(s)
- Toby G. Johnson
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford Mansfield Road, Oxford OX1 3TA United Kingdom
| | - Matthew J. Langton
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford Mansfield Road, Oxford OX1 3TA United Kingdom
| |
Collapse
|
9
|
Maity ML, Mahato S, Bandyopadhyay S. Visible-light-switchable Chalcone-Flavylium Photochromic Systems in Aqueous Media. Angew Chem Int Ed Engl 2023; 62:e202311551. [PMID: 37754675 DOI: 10.1002/anie.202311551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
The chalcone-flavylium photochromic system switches in aqueous media. However, the chalcone→flavylium conversion requires detrimental ultra-violet (UV) light for the switching which deters their applications in the biological domain. To address this issue, we have synthesized strategically modified chalcone scaffolds that can be reversibly switched to the flavylium forms with visible light ranging from 456 nm (blue) to 640 nm (red).
Collapse
Affiliation(s)
- Manik Lal Maity
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, WB-741246, India
| | - Samyadeb Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, WB-741246, India
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, WB-741246, India
| |
Collapse
|
10
|
Zhang SJ, Hao J, Zhu Y, Li H, Lin Z, Qiao SZ. pH-Triggered Molecular Switch Toward Texture-Regulated Zn Anode. Angew Chem Int Ed Engl 2023; 62:e202301570. [PMID: 36850048 DOI: 10.1002/anie.202301570] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Zn electrodes in aqueous media exhibit an unstable Zn/electrolyte interface due to severe parasitic reactions and dendrite formation. Here, a dynamic Zn interface modulation based on the molecular switch strategy is reported by hiring γ-butyrolactone (GBL) in ZnCl2 /H2 O electrolyte. During Zn plating, the increased interfacial alkalinity triggers molecular switch from GBL to γ-hydroxybutyrate (GHB). GHB strongly anchors on Zn surface via triple Zn-O bonding, leading to suppressive hydrogen evolution and texture-regulated Zn morphology. Upon Zn stripping, the fluctuant pH turns the molecular switch reaction off through the cyclization of GHB to GBL. This dynamic molecular switch strategy enables high Zn reversibility with Coulombic efficiency of 99.8 % and Zn||iodine batteries with high-cyclability under high Zn depth of discharge (50 %). This study demonstrates the importance of dynamic modulation for Zn electrode and realizes the reversible molecular switch strategy to enhance its reversibility.
Collapse
Affiliation(s)
- Shao-Jian Zhang
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA-5005, Australia
| | - Junnan Hao
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA-5005, Australia
| | - Yilong Zhu
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA-5005, Australia
| | - Huan Li
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA-5005, Australia
| | - Zhan Lin
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shi-Zhang Qiao
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA-5005, Australia
| |
Collapse
|
11
|
Taddei M, Garavelli M, Amirjalayer S, Conti I, Nenov A. Modus Operandi of a Pedalo-Type Molecular Switch: Insight from Dynamics and Theoretical Spectroscopy. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020816. [PMID: 36677872 PMCID: PMC9863296 DOI: 10.3390/molecules28020816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Molecular switches which can be triggered by light to interconvert between two or more well-defined conformation differing in their chemical or physical properties are fundamental for the development of materials with on-demand functionalities. Recently, a novel molecular switch based on a the azodicarboxamide core has been reported. It exhibits a volume-conserving conformational change upon excitation, making it a promising candidate for embedding in confined environments. In order to rationally implement and efficiently utilize the azodicarboxamide molecular switch, detailed insight into the coordinates governing the excited-state dynamics is needed. Here, we report a detailed comparative picture of the molecular motion at the atomic level in the presence and absence of explicit solvent. Our hybrid quantum mechanics/molecular mechanics (QM/MM) excited state simulations reveal that, although the energy landscape is slightly modulated by the solvation, the light-induced motion is dominated by a bending-assisted pedalo-type motion independent of the solvation. To support the predicted mechanism, we simulate time-resolved IR spectroscopy from first principles, thereby resolving fingerprints of the light-induced switching process. Our calculated time-resolved data are in good agreement with previously reported measured spectra.
Collapse
Affiliation(s)
- Mario Taddei
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, 40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, 40136 Bologna, Italy
- Correspondence: (M.G.); (I.C.); (A.N.)
| | - Saeed Amirjalayer
- Center for Nanotechnology, Center for Multiscale Theory and Computation, Physikalisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Irene Conti
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, 40136 Bologna, Italy
- Correspondence: (M.G.); (I.C.); (A.N.)
| | - Artur Nenov
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, 40136 Bologna, Italy
- Correspondence: (M.G.); (I.C.); (A.N.)
| |
Collapse
|
12
|
Ozhogin IV, Pugachev AD, Tkachev VV, Kozlenko AS, Chepurnoi PB, Dmitriev VS, Shilov GV, Aldoshin SM, Minkin VI, Lukyanov BS. Synthesis and study of interconversions of new indoline spiropyrans based on 4-hydroxy-3,5-diformylbenzoic acid. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3581-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|