1
|
Omar C, Freisa M, Man HM, Kechkeche D, Dinh THN, Haghiri-Gosnet AM, Le Potier I, Gamby J. Optimizing Tris(2-Carboxyethyl)phosphine and Mercaptohexanol Concentrations for Thiolated Oligonucleotide Immobilization on Platinum Electrodes in Microfluidic Platforms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26616-26625. [PMID: 39628051 DOI: 10.1021/acs.langmuir.4c03566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
In this study, we propose a strategy to explore the impact of the proportion of tris(2-carboxyethyl)phosphine (TCEP) and 6-mercaptohexanol (MCH) on the efficiency of oligonucleotide functionalization on PDMS microfluidic channels equipped with pairs of homemade microfabricated platinum microelectrodes. We identified an optimal concentration of these compounds that enables the effective orientation and distribution of probes, thereby facilitating subsequent target hybridization. The experiment included optimizing sample injection into microfluidic channels. We used TCEP as a reducing agent to help the DNA probes adhere to the channel electrode better. This stopped the formation of disulfide bonds during the probe immobilization step. We found the optimal TCEP/MCH mixture ratio (5 mM TCEP and 50 mM MCH), which led to a more uniform distribution and orientation of the DNA probes on the platinum electrode. These optimized conditions resulted in a more compact DNA monolayer and enhanced detection capabilities. The biosensor's performance was evaluated by the detection of the hybridization of complementary DNA sequences in the presence of equimolar Fe(CN)63-/Fe(CN)64-. The detection of the synthetic GP8 resistance gene is facilitated by a measurable decrease in the electron transfer rate, which is directly proportional to its concentration. Under the optimized conditions, the DNA biosensor showed excellent sensitivity (with a detection limit of 10-17 M) and high specificity when tested against noncomplementary DNA strands.
Collapse
Affiliation(s)
- Choayb Omar
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - Martina Freisa
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - Hiu Mun Man
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - Djamila Kechkeche
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - Thi Hong Nhung Dinh
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - Anne-Marie Haghiri-Gosnet
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - Isabelle Le Potier
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - Jean Gamby
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| |
Collapse
|
2
|
Xiao X, Tang L, Li C, Sun Z, Yao Q, Zhang GJ, Sun Y, Zhu F, Zhang Y. Cascade CRISPR/Cas12a and DSN for the electrochemical biosensing of miR-1246 in BC-derived exosomes. Bioelectrochemistry 2024; 159:108753. [PMID: 38833812 DOI: 10.1016/j.bioelechem.2024.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
MiR-1246 in breast cancer-derived exosomes was a promising biomarker for early diagnosis of breast cancer(BC). However, the low abundance, high homology and complex background interference make the accurate quantitative detection of miR-1246 facing great challenges. In this study, we developed an electrochemical biosensor based on the subtly combined of CRISPR/Cas12a, double-stranded specific nuclease(DSN) and magnetic nanoparticles(MNPs) for the detection of miR-1246 in BC-derived exosomes. Ascribed to the good synergistic effect of DSN, Cas12a and MNPs, the developed electrochemical biosensor exhibited excellent performance with the linear range from 500 aM to 5 pM, and the detection limit as low down to about 50 aM. The target-specific triggered enzyme-digest activity of DSN and Cas12a system, as well as the powerful separation ability of MNPs ensure the high specificity of developed electrochemical biosensor which can distinguish single base mismatches. In addition, the developed electrochemical biosensor has been successfully applied to detect miR-1246 in blood-derived exosomes and realize distinguishing the BC patients from the healthy individuals. It is expected that the well-designed biosensing platform will open up new avenues for clinical liquid biopsy and early screening of breast cancer, as well as provide deeper insights into clinical oncology treatment.
Collapse
Affiliation(s)
- Xueqian Xiao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Lina Tang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Chaoqing Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Zongyue Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Qunfeng Yao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Yujie Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Fang Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yulin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China.
| |
Collapse
|
3
|
Guan Z, Liu Q, Ma CB, Du Y. Electrochemical microfluidic sensing platforms for biosecurity analysis. Anal Bioanal Chem 2024; 416:4663-4677. [PMID: 38523160 DOI: 10.1007/s00216-024-05256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Biosecurity encompasses the health and safety of humans, animals, plants, and the environment. In this article, "biosecurity" is defined as encompassing the comprehensive aspects of human, animal, plant, and environmental safety. Reliable biosecurity testing technology is the key point for effectively assessing biosecurity risks and ensuring biosecurity. Therefore, it is crucial to develop excellent detection technologies to detect risk factors that can affect biosecurity. An electrochemical microfluidic biosensing platform integrates fluid control, target recognition, signal transduction, and output and incorporates the advantages of electrochemical analysis technology and microfluidic technology. Thus, an electrochemical microfluidic biosensing platform, characterized by exceptional analytical sensitivity, portability, rapid analysis speed, low reagent consumption, and low risk of contamination, shows considerable promise for biosecurity detection compared to traditional, more complex, and time-consuming detection technologies. This review provides a concise introduction to electrochemical microfluidic biosensors and biosecurity. It highlights recent research advances in utilizing electrochemical microfluidic biosensing platforms to assess biosecurity risk factors. It includes the use of electrochemical microfluidic biosensors for the detection of risk factors directly endangering biosecurity (direct application: namely, risk factors directly endangering the health of human, animals, and plants) and for the detection of risk factors indirectly endangering biosecurity (indirect application: namely, risk factors endangering the safety of food and the environment). Finally, we outline the current challenges and future perspectives of electrochemical microfluidic biosensing platforms.
Collapse
Affiliation(s)
- Zhaowei Guan
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
| | - Quanyi Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science & Technology of China, Hefei, 230026, Anhui, China
| | - Chong-Bo Ma
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China.
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- School of Applied Chemistry and Engineering, University of Science & Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
4
|
Lou C, Yang H, Hou Y, Huang H, Qiu J, Wang C, Sang Y, Liu H, Han L. Microfluidic Platforms for Real-Time In Situ Monitoring of Biomarkers for Cellular Processes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307051. [PMID: 37844125 DOI: 10.1002/adma.202307051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Cellular processes are mechanisms carried out at the cellular level that are aimed at guaranteeing the stability of the organism they comprise. The investigation of cellular processes is key to understanding cell fate, understanding pathogenic mechanisms, and developing new therapeutic technologies. Microfluidic platforms are thought to be the most powerful tools among all methodologies for investigating cellular processes because they can integrate almost all types of the existing intracellular and extracellular biomarker-sensing methods and observation approaches for cell behavior, combined with precisely controlled cell culture, manipulation, stimulation, and analysis. Most importantly, microfluidic platforms can realize real-time in situ detection of secreted proteins, exosomes, and other biomarkers produced during cell physiological processes, thereby providing the possibility to draw the whole picture for a cellular process. Owing to their advantages of high throughput, low sample consumption, and precise cell control, microfluidic platforms with real-time in situ monitoring characteristics are widely being used in cell analysis, disease diagnosis, pharmaceutical research, and biological production. This review focuses on the basic concepts, recent progress, and application prospects of microfluidic platforms for real-time in situ monitoring of biomarkers in cellular processes.
Collapse
Affiliation(s)
- Chengming Lou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hongru Yang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Ying Hou
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Haina Huang
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Chunhua Wang
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266000, P. R. China
| |
Collapse
|
5
|
Du Z, Chen L, Yang S. Advancements in the research of finger-actuated POCT chips. Mikrochim Acta 2023; 191:65. [PMID: 38158397 DOI: 10.1007/s00604-023-06140-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Microfluidic point-of-care testing (POCT) chips are used to enable the mixing and reaction of small sample volumes, facilitating target molecule detection. Traditional methods for actuating POCT chips rely on external pumps or power supplies, which are complex and non-portable. The development of finger-actuated chips has reduced operational difficulty and improved portability, promoting the development of POCT chips. This paper reviews the significance, developments, and potential applications of finger-actuated POCT chips. Three methods for controlling the flow accuracy of finger-actuated chips are summarized: direct push, indirect control, and sample injection control method, along with their respective advantages and disadvantages. Meanwhile, a comprehensive analysis of multi-fluid driving modes is provided, categorizing them into single-push multi-driving and multi-push multi-driving modes. Furthermore, recent research breakthroughs in finger-actuated chips are thoroughly summarized, and their structures, driving, and detection methods are discussed. Finally, this paper discusses the driving performance of finger-actuated chips, the suitability of detection scenarios, and the compatibility with existing detection technologies. It also provides prospects for the future development and application of finger-actuated POCT chips.
Collapse
Affiliation(s)
- Zhichang Du
- College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, 361021, China
| | - Ling Chen
- College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, 361021, China.
| | - Shaohui Yang
- College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, 361021, China
- Key Laboratory of Ocean Renewable Energy Equipment of Fujian Province, Xiamen, 361021, China
- Key Laboratory of Energy Cleaning Utilization and Development of Fujian Province, Xiamen, 361021, China
| |
Collapse
|
6
|
Bovari-Biri J, Garai K, Banfai K, Csongei V, Pongracz JE. miRNAs as Predictors of Barrier Integrity. BIOSENSORS 2023; 13:bios13040422. [PMID: 37185497 PMCID: PMC10136429 DOI: 10.3390/bios13040422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
The human body has several barriers that protect its integrity and shield it from mechanical, chemical, and microbial harm. The various barriers include the skin, intestinal and respiratory epithelia, blood-brain barrier (BBB), and immune system. In the present review, the focus is on the physical barriers that are formed by cell layers. The barrier function is influenced by the molecular microenvironment of the cells forming the barriers. The integrity of the barrier cell layers is maintained by the intricate balance of protein expression that is partly regulated by microRNAs (miRNAs) both in the intracellular space and the extracellular microenvironment. The detection of changes in miRNA patterns has become a major focus of diagnostic, prognostic, and disease progression, as well as therapy-response, markers using a great variety of detection systems in recent years. In the present review, we highlight the importance of liquid biopsies in assessing barrier integrity and challenges in differential miRNA detection.
Collapse
Affiliation(s)
- Judit Bovari-Biri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Kitti Garai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Krisztina Banfai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Veronika Csongei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Judit E Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| |
Collapse
|