1
|
Brasili F, Del Monte G, Capocefalo A, Chauveau E, Buratti E, Casciardi S, Truzzolillo D, Sennato S, Zaccarelli E. Toward a Unified Description of the Electrostatic Assembly of Microgels and Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58770-58783. [PMID: 38060242 DOI: 10.1021/acsami.3c14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The interplay of soft responsive particles, such as microgels, with nanoparticles (NPs) yields highly versatile complexes that show great potential for applications, ranging from plasmonic sensing to catalysis and drug delivery. However, the microgel-NP assembly process has not been investigated so far at the microscopic level, thus hindering the possibility of designing such hybrid systems a priori. In this work, we combine state-of-the-art numerical simulations with experiments to elucidate the fundamental mechanisms taking place when microgel-NP assembly is controlled by electrostatic interactions and the associated effects on the structure of the resulting complexes. We find a general behavior where, by increasing the number of interacting NPs, the microgel deswells up to a minimum size after which a plateau behavior occurs. This occurs either when NPs are mainly adsorbed to the microgel corona via the folding of the more external chains or when NPs penetrate inside the microgel, thereby inducing a collective reorganization of the polymer network. By varying microgel properties, such as fraction of cross-linkers or charge, as well as NP size and charge, we further show that the microgel deswelling curves can be rescaled onto a single master curve, for both experiments and simulations, demonstrating that the process is entirely controlled by the charge of the whole microgel-NP complex. Our results thus have a direct relevance in fundamental materials science and offer novel tools to tailor the nanofabrication of hybrid devices of technological interest.
Collapse
Affiliation(s)
- Francesco Brasili
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giovanni Del Monte
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Angela Capocefalo
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy
| | - Edouard Chauveau
- UMR 5221, CNRS-Université de Montpellier, Laboratoire Charles Coulomb, 34095 Montpellier, France
| | - Elena Buratti
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance Against Accidents at Work (INAIL), Via di Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Domenico Truzzolillo
- UMR 5221, CNRS-Université de Montpellier, Laboratoire Charles Coulomb, 34095 Montpellier, France
| | - Simona Sennato
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Emanuela Zaccarelli
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
2
|
Xu X, Sarhan RM, Mei S, Kochovski Z, Koopman W, Priestley RD, Lu Y. Photothermally Triggered Nanoreactors with a Tunable Catalyst Location and Catalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48623-48631. [PMID: 37807243 DOI: 10.1021/acsami.3c09657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Thermosensitive microgels based on poly(N-isopropylacrylamide) (PNIPAm) have been widely used to create nanoreactors with controlled catalytic activity through the immobilization of metal nanoparticles (NPs). However, traditional approaches with metal NPs located only in the polymer network rely on electric heating to initiate the reaction. In this study, we developed a photothermal-responsive yolk-shell nanoreactor with a tunable location of metal NPs. The catalytic performance of these nanoreactors can be controlled by both light irradiation and conventional heating, that is, electric heating. Interestingly, the location of the catalysts had a significant impact on the reduction kinetics of the nanoreactors; catalysts in the shell exhibited higher catalytic activity compared with those in the core, under conventional heating. When subjected to light irradiation, nanoreactors with catalysts loaded in the core demonstrated improved catalytic performance compared to direct heating, while nanoreactors with catalysts in the shell exhibited relatively similar activity. We attribute this enhancement in catalytic activity to the spatial distribution of the catalysts and the localized heating within the polydopamine cores of the nanoreactors. This research presents exciting prospects for the design of innovative smart nanoreactors and efficient photothermal-assisted catalysis.
Collapse
Affiliation(s)
- Xiaohui Xu
- Institutue of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin fur Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Radwan M Sarhan
- Institutue of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin fur Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Shilin Mei
- Institutue of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin fur Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Zdravko Kochovski
- Institutue of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin fur Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Wouter Koopman
- Institute of Physics and Astronomy, University of Potsdam, Potsdam 14467, Germany
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Yan Lu
- Institutue of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin fur Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany
- Institute of Chemistry, University of Potsdam, Potsdam 14467, Germany
| |
Collapse
|
3
|
Arif M. A Critical Review of Palladium Nanoparticles Decorated in Smart Microgels. Polymers (Basel) 2023; 15:3600. [PMID: 37688226 PMCID: PMC10490228 DOI: 10.3390/polym15173600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Palladium nanoparticles (Pd) combined with smart polymer microgels have attracted significant interest in the past decade. These hybrid materials have unique properties that make them appealing for various applications in biology, environmental remediation, and catalysis. The responsive nature of the microgels in these hybrids holds great promise for a wide range of applications. The literature contains diverse morphologies and architectures of Pd nanoparticle-based hybrid microgels, and the architecture of these hybrids plays a vital role in determining their potential uses. Therefore, specific Pd nanoparticle-based hybrid microgels are designed for specific applications. This report provides an overview of recent advancements in the classification, synthesis, properties, characterization, and uses of Pd nanostructures loaded into microgels. Additionally, the report discusses the latest progress in biomedical, catalytic, environmental, and sensing applications of Pd-based hybrid microgels in a tutorial manner.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| |
Collapse
|
4
|
Sabadasch V, Dirksen M, Fandrich P, Cremer J, Biere N, Anselmetti D, Hellweg T. Pd Nanoparticle-Loaded Smart Microgel-Based Membranes as Reusable Catalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49181-49188. [PMID: 36256601 DOI: 10.1021/acsami.2c14415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, palladium-loaded smart membranes made by UV cross-linking of thermoresponsive microgels are prepared to obtain a reusable, catalytically active material which can, for example, be implemented in chemical reactors. The membranes are examined with respect to their coverage of a supporting mesh via atomic force microscopy measurements. Force indentation mapping was performed in the dried, collapsed state and in the swollen state in water to determine the Young modulus. Furthermore, we compare the catalytic activity of the membrane with the corresponding suspended colloidal nanoparticle microgel hybrids. For this purpose, the reduction of 4-nitrophenol is an established model reaction to quantify the catalytic activity by UV-vis spectroscopy. The membrane is embedded inside a continuous stirred tank reactor equipped for continuous monitoring of the reaction progress. Although catalysis with membranes shows lower catalytic activity than freely dispersed particles, membranes allow straightforward separation and recycling of the catalyst. The fabricated membranes in this work show no decrease in catalytic activity between several cycles, unlike free particles. The feasible and durable deposition of catalytically active inter-cross-linked microgel particles on commercial nylon meshes as supporting scaffolds, as demonstrated in this work, is promising for up-scaling of continuous industrial processes.
Collapse
Affiliation(s)
- Viktor Sabadasch
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Maxim Dirksen
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Pascal Fandrich
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Julian Cremer
- Department of Physics, Experimental Biophysics & Applied Nanosciences, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Niklas Biere
- Department of Physics, Experimental Biophysics & Applied Nanosciences, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Dario Anselmetti
- Department of Physics, Experimental Biophysics & Applied Nanosciences, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Thomas Hellweg
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| |
Collapse
|