1
|
Hu L, Gao Y, Cai Q, Wei Y, Zhu J, Wu W, Yang Y. Cholesterol-substituted spiropyran: Photochromism, thermochromism, mechanochromism and its application in time-resolved information encryption. J Colloid Interface Sci 2024; 665:545-553. [PMID: 38547635 DOI: 10.1016/j.jcis.2024.03.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Organic multi-stimulus-responsive materials are widely used in anti-counterfeiting and information encryption due to their unique response characteristics and designability. However, progress in obtaining multi-stimulus-responsive smart materials has been very slow. Herein, a spiropyran derivative is constructed, which shows photochromic, thermochromic and mechanical photochromic properties, and has reversible absorption/luminescence adjustment ability. By introducing non-covalent interactions such as van der Waals force and hydrogen bond, this new molecule is more sensitive to external stimuli and exhibits better photochromic, mechanochromic and thermochromic properties with rapid speed and high contrast. Furthermore, these three stimulus responses can be completely restored to the initial state under white light irradiation. The reversible multiple response characteristics of this molecule make it possible to provide dynamic anti-counterfeiting and advanced information encryption capabilities. To demonstrate its application in advanced information encryption, powders treated with different stimuli are combined with fluorescent dyes to encrypt complex digital information. This work puts forward a new time-resolved encryption strategy, which provides important guidance for the development of time-resolved information security materials.
Collapse
Affiliation(s)
- Leilei Hu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yangyang Gao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qihong Cai
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Youhao Wei
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiangkun Zhu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wei Wu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuhui Yang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312451, China.
| |
Collapse
|
2
|
Chabaud B, Bonnet H, Lartia R, Van Der Heyden A, Auzély-Velty R, Boturyn D, Coche-Guérente L, Dubacheva GV. Influence of Surface Chemistry on Host/Guest Interactions: A Model Study on Redox-Sensitive β-Cyclodextrin/Ferrocene Complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4646-4660. [PMID: 38387876 DOI: 10.1021/acs.langmuir.3c03279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
While host/guest interactions are widely used to control molecular assembly on surfaces, quantitative information on the effect of surface chemistry on their efficiency is lacking. To address this question, we combined electrochemical characterization with quartz crystal microbalance with dissipation monitoring to study host/guest interactions between surface-attached ferrocene (Fc) guests and soluble β-cyclodextrin (β-CD) hosts. We identified several parameters that influence the redox response, β-CD complexation ability, and repellent properties of Fc monolayers, including the method of Fc grafting, the linker connecting Fc with the surface, and the diluting molecule used to tune Fc surface density. The study on monovalent β-CD/Fc complexation was completed by the characterization of multivalent interactions between Fc monolayers and β-CD-functionalized polymers, with new insights being obtained on the interplay between the surface chemistry, binding efficiency, and reversibility under electrochemical stimulus. These results should facilitate the design of well-defined functional interfaces and their implementation in stimuli-responsive materials and sensing devices.
Collapse
Affiliation(s)
- Baptiste Chabaud
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| | - Hugues Bonnet
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| | - Rémy Lartia
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| | - Angéline Van Der Heyden
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| | | | - Didier Boturyn
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| | - Liliane Coche-Guérente
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| | - Galina V Dubacheva
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| |
Collapse
|
3
|
Di Martino M, Sessa L, Diana R, Piotto S, Concilio S. Recent Progress in Photoresponsive Biomaterials. Molecules 2023; 28:molecules28093712. [PMID: 37175122 PMCID: PMC10180172 DOI: 10.3390/molecules28093712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Photoresponsive biomaterials have garnered increasing attention recently due to their ability to dynamically regulate biological interactions and cellular behaviors in response to light. This review provides an overview of recent advances in the design, synthesis, and applications of photoresponsive biomaterials, including photochromic molecules, photocleavable linkers, and photoreactive polymers. We highlight the various approaches used to control the photoresponsive behavior of these materials, including modulation of light intensity, wavelength, and duration. Additionally, we discuss the applications of photoresponsive biomaterials in various fields, including drug delivery, tissue engineering, biosensing, and optical storage. A selection of significant cutting-edge articles collected in recent years has been discussed based on the structural pattern and light-responsive performance, focusing mainly on the photoactivity of azobenzene, hydrazone, diarylethenes, and spiropyrans, and the design of smart materials as the most targeted and desirable application. Overall, this review highlights the potential of photoresponsive biomaterials to enable spatiotemporal control of biological processes and opens up exciting opportunities for developing advanced biomaterials with enhanced functionality.
Collapse
Affiliation(s)
- Miriam Di Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
- Bionam Research Centre for Biomaterials, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Rosita Diana
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
- Bionam Research Centre for Biomaterials, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Simona Concilio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
- Bionam Research Centre for Biomaterials, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|