1
|
Dascălu AE, Furman C, Lancel S, Lipka E, Liberelle M, Boulanger E, Ghinet A. Ultrasound-Assisted Synthesis of Pyrazoline Derivatives as Potential Antagonists of RAGE-Mediated Pathologies: Insights from SAR Studies and Biological Evaluations. ChemMedChem 2024:e202400527. [PMID: 39289154 DOI: 10.1002/cmdc.202400527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
In the context of age-related disorders, the receptor of advanced glycation end products (RAGE), plays a pivotal role in the pathogenesis of these conditions by triggering downstream signaling pathways associated with chronic inflammation and oxidative stress. Targeting this inflammaging phenomenon with RAGE antagonists holds promise for interventions with broad implications in healthy aging and the management of age-related conditions. This study explores the structure-activity relationship (SAR) of pyrazoline-based RAGE antagonists synthesized using an ultrasound-assisted green one-pot two-steps methodology. Our investigation identifies phenylurenyl-pyrazoline 2 g as a promising candidate, demonstrating superior efficiency compared to the reference antagonist Azeliragon (IC50=13 μM). Compound 2 g exhibits potent inhibition of the AGE2-BSA/sRAGE interaction (IC50=22 μM) and favorable affinity in Microscale Thermophoresis (MST) assays (Kd=17.1 μM), along with a favorable safety profile, with no apparent cytotoxicity observed in vitro in the MTS assay. These findings underscore the potential of pyrazoline-derived RAGE antagonists as therapeutic agents for addressing age-related disorders.
Collapse
Affiliation(s)
- Anca-Elena Dascălu
- Health and Environment, Laboratory of Sustainable Chemistry and Health, Junia, F-59000, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Bd. Carol I, Nr. 11, 700506, Iasi, Romania
| | - Christophe Furman
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- Univ. Lille, UFR Pharmacie, BP 83, F-59006, Lille, France
| | - Steve Lancel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Emmanuelle Lipka
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- Univ. Lille, UFR Pharmacie, BP 83, F-59006, Lille, France
| | | | - Eric Boulanger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Alina Ghinet
- Health and Environment, Laboratory of Sustainable Chemistry and Health, Junia, F-59000, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Bd. Carol I, Nr. 11, 700506, Iasi, Romania
| |
Collapse
|
2
|
Abid I, Moslah W, Cojean S, Imbert N, Loiseau PM, Chamayou A, Srairi-Abid N, Calvet R, Baltas M. The Synthesis of 2'-Hydroxychalcones under Ball Mill Conditions and Their Biological Activities. Molecules 2024; 29:1819. [PMID: 38675640 PMCID: PMC11054009 DOI: 10.3390/molecules29081819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Chalcones are polyphenols that belong to the flavonoids family, known for their broad pharmacological properties. They have thus attracted the attention of chemists for their obtention and potential activities. In our study, a library of compounds from 2'-hydroxychalcone's family was first synthesized. A one-step mechanochemical synthesis via Claisen-Schmidt condensation reaction under ball mill conditions was studied, first in a model reaction between a 5'-fluoro-2'-hydroxyacetophenone and 3,4-dimethoxybenzaldehyde. The reaction was optimized in terms of catalysts, ratio of reagents, reaction time, and influence of additives. Among all assays, we retained the best one, which gave the highest yield of 96% when operating in the presence of 1 + 1 eq. of substituted benzaldehyde and 2 eq. of KOH under two grinding cycles of 30 min. Thus, this protocol was adopted for the synthesis of the selected library of 2'-hydroxychalcones derivatives. The biological activities of 17 compounds were then assessed against Plasmodium falciparum, Leishmania donovani parasite development, as well as IGR-39 melanoma cell lines by inhibiting their viability and proliferation. Compounds 6 and 11 are the most potent against L. donovani, exhibiting IC50 values of 2.33 µM and 2.82 µM, respectively, better than the reference drug Miltefosine (3.66 µM). Compound 15 presented the most interesting antimalarial activity against the 3D7 strain, with IC50 = 3.21 µM. Finally, chalcone 12 gave the best result against IGR-39 melanoma cell lines, with an IC50 value of 12 µM better than the reference drug Dacarbazine (IC50 = 25 µM).
Collapse
Affiliation(s)
- Imen Abid
- LCC (Laboratoire de Chimie de Coordination), UPR CNRS 8241, Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France;
- Centre RAPSODEE (Recherche d’Albi en génie des Procédés des SOlides Divisés, de l’Energie et de l’Environnement), IMT Mines Albi, UMR CNRS 5302, Université de Toulouse, Campus Jarlard, Allée des Sciences, CEDEX 09, F-81013 Albi, France;
| | - Wassim Moslah
- Laboratoire des Biomolecules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis-ElManar, Tunis 1002, Tunisia; (W.M.); (N.S.-A.)
| | - Sandrine Cojean
- BioCIS (Biomolécules: Conception, Isolement et Synthèse), UMR CNRS 8076, Université Paris-Saclay, F-91400 Orsay, France; (S.C.); (N.I.); (P.M.L.)
- National Malaria Reference Centre, AP-HP, Hôpital Bichat—Claude Bernard, 46 Rue Henri Huchard, F-75018 Paris, France
| | - Nicolas Imbert
- BioCIS (Biomolécules: Conception, Isolement et Synthèse), UMR CNRS 8076, Université Paris-Saclay, F-91400 Orsay, France; (S.C.); (N.I.); (P.M.L.)
| | - Philippe M. Loiseau
- BioCIS (Biomolécules: Conception, Isolement et Synthèse), UMR CNRS 8076, Université Paris-Saclay, F-91400 Orsay, France; (S.C.); (N.I.); (P.M.L.)
| | - Alain Chamayou
- Centre RAPSODEE (Recherche d’Albi en génie des Procédés des SOlides Divisés, de l’Energie et de l’Environnement), IMT Mines Albi, UMR CNRS 5302, Université de Toulouse, Campus Jarlard, Allée des Sciences, CEDEX 09, F-81013 Albi, France;
| | - Najet Srairi-Abid
- Laboratoire des Biomolecules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis-ElManar, Tunis 1002, Tunisia; (W.M.); (N.S.-A.)
| | - Rachel Calvet
- Centre RAPSODEE (Recherche d’Albi en génie des Procédés des SOlides Divisés, de l’Energie et de l’Environnement), IMT Mines Albi, UMR CNRS 5302, Université de Toulouse, Campus Jarlard, Allée des Sciences, CEDEX 09, F-81013 Albi, France;
| | - Michel Baltas
- LCC (Laboratoire de Chimie de Coordination), UPR CNRS 8241, Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France;
| |
Collapse
|
3
|
Rastogi SK, Khanka S, Kumar S, Lakra A, Rathur R, Sharma K, Bisen AC, Bhatta RS, Kumar R, Singh D, Sinha AK. Design, synthesis and biological evaluation of novel pyrimidine derivatives as bone anabolic agents promoting osteogenesis via the BMP2/SMAD1 signaling pathway. RSC Med Chem 2024; 15:677-694. [PMID: 38389884 PMCID: PMC10880903 DOI: 10.1039/d3md00500c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/16/2023] [Indexed: 02/24/2024] Open
Abstract
Anti-resorptive inhibitors such as bisphosphonates are widely used but they have limited efficacy and serious side effects. Though subcutaneous injection of teriparatide [PTH (1-34)] is an effective anabolic therapy, long-term repeated subcutaneous administration is not recommended. Henceforth, orally bio-available small-molecule-based novel therapeutics are unmet medical needs to improve the treatment. In this study, we designed, synthesized, and carried out a biological evaluation of 31 pyrimidine derivatives as potent bone anabolic agents. A series of in vitro experiments confirmed N-(5-bromo-4-(4-bromophenyl)-6-(2,4,5-trimethoxyphenyl)pyrimidin-2-yl)hexanamide (18a) as the most efficacious anabolic agent at 1 pM. It promoted osteogenesis by upregulating the expression of osteogenic genes (RUNX2 and type 1 col) via activation of the BMP2/SMAD1 signaling pathway. In vitro osteogenic potential was further validated using an in vivo fracture defect model where compound 18a promoted the bone formation rate at 5 mg kg-1. We also established the structure-activity relationship and pharmacokinetic studies of 18a.
Collapse
Affiliation(s)
- Sumit K Rastogi
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002. U.P. India
| | - Sonu Khanka
- Division of Endocrinology, CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002. U.P. India
| | - Santosh Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002. U.P. India
| | - Amardeep Lakra
- Division of Endocrinology, CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Rajat Rathur
- Division of Endocrinology, CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002. U.P. India
| | - Kriti Sharma
- Division of Endocrinology, CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002. U.P. India
| | - Amol Chhatrapati Bisen
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002. U.P. India
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Rabi Sankar Bhatta
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002. U.P. India
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002. U.P. India
| | - Divya Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002. U.P. India
| | - Arun K Sinha
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002. U.P. India
| |
Collapse
|
4
|
Nematollahi MH, Mehrabani M, Hozhabri Y, Mirtajaddini M, Iravani S. Antiviral and antimicrobial applications of chalcones and their derivatives: From nature to greener synthesis. Heliyon 2023; 9:e20428. [PMID: 37810815 PMCID: PMC10556610 DOI: 10.1016/j.heliyon.2023.e20428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
Chalcones and their derivatives have been widely studied due to their versatile pharmacological and biological activities, such as anti-inflammatory, antibacterial, antiviral, and antitumor effects. These compounds have shown suitable antiviral effects through the selective targeting of a variety of viral enzymes, including lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fumarate reductase, protein tyrosine phosphatase, topoisomerase-II, protein kinases, integrase/protease, and lactate/isocitrate dehydrogenase, among others. Chalcones and their derivatives have displayed excellent potential for combating pathogenic bacteria and fungi (especially, multidrug-resistant bacteria). However, relevant mechanisms should be further explored, focusing on inhibitory effects against DNA gyrase B, UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), and efflux pumps (e.g., NorA), among others. In addition, the antifungal and antiparasitic activities of these compounds (e.g., antitrypanosomal and antileishmanial properties) have prompted additional explorations. Nonetheless, systematic analysis of the relevant mechanisms, biosafety issues, and pharmacological properties, as well as clinical translation studies, are vital for practical applications. Herein, recent advancements pertaining to the antibacterial, antiviral, antiparasitic, and antifungal activities of chalcones and their derivatives are deliberated, focusing on the relevant mechanisms of action, crucial challenges, and future prospects. Furthermore, due to the great importance of greener and more sustainable synthesis of these valuable compounds, especially on an industrial scale, the progress made in this field has been briefly discussed. Hopefully, this review can serve as a catalyst for researchers to delve deeper into the exploration and designing of novel chalcone compounds with medicinal properties, especially against pathogenic viruses and multidrug-resistant bacteria as major causes of concern for human health.
Collapse
Affiliation(s)
- Mohammad Hadi Nematollahi
- Herbal and Traditional Medicines Research Center, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaser Hozhabri
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryamossadat Mirtajaddini
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| |
Collapse
|
5
|
Tom A, Jacob J, Mathews M, Rajagopal R, Alfarhan A, Barcelo D, Narayanankutty A. Synthesis of Bis-Chalcones and Evaluation of Its Effect on Peroxide-Induced Cell Death and Lipopolysaccharide-Induced Cytokine Production. Molecules 2023; 28:6354. [PMID: 37687181 PMCID: PMC10488834 DOI: 10.3390/molecules28176354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Plant secondary metabolites are important sources of biologically active compounds with wide pharmacological potentials. Among the different classes, the chalcones form integral pharmacologically active agents. Natural chalcones and bis-chalcones exhibit high antioxidant and anti-inflammatory properties in various experiments. Studies are also underway to explore more biologically active bis-chalcones by chemical synthesis of these compounds. In this study, the effects of six synthetic bis-chalcones were evaluated in intestinal epithelial cells (IEC-6); further, the anti-inflammatory potentials were studied in lipopolysaccharide-induced cytokine production in macrophages. The synthesized bis-chalcones differ from each other first of all by the nature of the aromatic cores (functional group substitution, and their position) and by the size of a central alicycle. The exposure of IEC-6 cells to peroxide radicals reduced the cell viability; however, pre-treatment with the bis-chalcones improved the cell viability in these cells. The mechanism of action was observed to be the increased levels of glutathione and antioxidant enzyme activities. Further, these bis-chalcones also inhibited the LPS-stimulation-induced inflammatory cytokine production in RAW 264.7 macrophages. Overall, the present study indicated the cytoprotective and anti-inflammatory abilities of synthetic bis-chalcones.
Collapse
Affiliation(s)
- Alby Tom
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College Devagiri (Autonomous), Calicut 673008, Kerala, India;
| | - Jisha Jacob
- Molecular Microbial Ecology Lab, PG and Research Department of Zoology, St. Joseph’s College Devagiri (Autonomous), Calicut 680555, Kerala, India;
| | - Manoj Mathews
- PG and Research Department of Chemistry, St. Joseph’s College Devagiri (Autonomous), Calicut 680555, Kerala, India;
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.R.); (A.A.)
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.R.); (A.A.)
| | - Damia Barcelo
- Water and Soil Research Group, Department of Environmental Chemistry, Idaea-Csic, Jordi Girona 18-26, 08034 Barcelona, Spain;
| | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College Devagiri (Autonomous), Calicut 673008, Kerala, India;
| |
Collapse
|