1
|
Wang X, Tian W, Ye Y, Chen Y, Wu W, Jiang S, Wang Y, Han X. Surface modifications towards superhydrophobic wood-based composites: Construction strategies, functionalization, and perspectives. Adv Colloid Interface Sci 2024; 326:103142. [PMID: 38555834 DOI: 10.1016/j.cis.2024.103142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Amidst the burgeoning interest in multifunctional superhydrophobic wood-based composites (SWBCs) for their varied applications and the need for improved environmental resilience, recent efforts focus on enhancing their utility by integrating features such as mechanical and chemical stability, self-healing capabilities, flame resistance, and antimicrobial properties. Research indicates that various external conditions can influence the wettability and additional characteristics of SWBCs. This comprehensive review outlines three critical factors affecting SWBCs' performance: synthesis methods, wood taxonomy, and chemical agents. It further provides a detailed overview of SWBCs' specific attributes, including essential qualities for diverse applications and the limitations posed by different contexts. Additionally, it elaborates on performance evaluation techniques, offering a foundational framework for SWBCs' practical application. This work aims to serve as an important resource for future research and development in SWBC engineering.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Tian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuhang Ye
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuan Chen
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100000, China
| | - Weijie Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuli Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|