1
|
Gao B, Jiang J, Zhou S, Li J, Zhou Q, Li X. Toward the Next Generation Human-Machine Interaction: Headworn Wearable Devices. Anal Chem 2024; 96:10477-10487. [PMID: 38888091 DOI: 10.1021/acs.analchem.4c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Wearable devices are lightweight and portable devices worn directly on the body or integrated into the user's clothing or accessories. They are usually connected to the Internet and combined with various software applications to monitor the user's physical conditions. The latest research shows that wearable head devices, particularly those incorporating microfluidic technology, enable the monitoring of bodily fluids and physiological states. Here, we summarize the main forms, functions, and applications of head wearable devices through innovative researches in recent years. The main functions of wearable head devices are sensor monitoring, diagnosis, and even therapeutic interventions. Through this application, real-time monitoring of human physiological conditions and noninvasive treatment can be realized. Furthermore, microfluidics can realize real-time monitoring of body fluids and skin interstitial fluid, which is highly significant in medical diagnosis and has broad medical application prospects. However, despite the progress made, significant challenges persist in the integration of microfluidics into wearable devices at the current technological level. Herein, we focus on summarizing the cutting-edge applications of microfluidic contact lenses and offer insights into the burgeoning intersection between microfluidics and head-worn wearables, providing a glimpse into their future prospects.
Collapse
Affiliation(s)
- Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jingwen Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Shu Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jun Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Qian Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
2
|
Mahmoudian F, Ahmari A, Shabani S, Sadeghi B, Fahimirad S, Fattahi F. Aptamers as an approach to targeted cancer therapy. Cancer Cell Int 2024; 24:108. [PMID: 38493153 PMCID: PMC10943855 DOI: 10.1186/s12935-024-03295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Conventional cancer treatments can cause serious side effects because they are not specific to cancer cells and can damage healthy cells. Aptamers often are single-stranded oligonucleotides arranged in a unique architecture, allowing them to bind specifically to target sites. This feature makes them an ideal choice for targeted therapeutics. They are typically produced through the systematic evolution of ligands by exponential enrichment (SELEX) and undergo extensive pharmacological revision to modify their affinity, specificity, and therapeutic half-life. Aptamers can act as drugs themselves, directly inhibiting tumor cells. Alternatively, they can be used in targeted drug delivery systems to transport drugs directly to tumor cells, minimizing toxicity to healthy cells. In this review, we will discuss the latest and most advanced approaches to using aptamers for cancer treatment, particularly targeted therapy overcoming resistance to conventional therapies.
Collapse
Affiliation(s)
- Fatemeh Mahmoudian
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Azin Ahmari
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Radiation Oncology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Shiva Shabani
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Infectious Diseases, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Bahman Sadeghi
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Community Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Fahimeh Fattahi
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Han X, Gong C, Yang Q, Zheng K, Wang Z, Zhang W. Biomimetic Nano-Drug Delivery System: An Emerging Platform for Promoting Tumor Treatment. Int J Nanomedicine 2024; 19:571-608. [PMID: 38260239 PMCID: PMC10802790 DOI: 10.2147/ijn.s442877] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
With the development of nanotechnology, nanoparticles (NPs) have shown broad prospects as drug delivery vehicles. However, they exhibit certain limitations, including low biocompatibility, poor physiological stability, rapid clearance from the body, and nonspecific targeting, which have hampered their clinical application. Therefore, the development of novel drug delivery systems with improved biocompatibility and high target specificity remains a major challenge. In recent years, biofilm mediated biomimetic nano-drug delivery system (BNDDS) has become a research hotspot focus in the field of life sciences. This new biomimetic platform uses bio-nanotechnology to encapsulate synthetic NPswithin biomimetic membrane, organically integrating the low immunogenicity, low toxicity, high tumor targeting, good biocompatibility of the biofilm with the adjustability and versatility of the nanocarrier, and shows promising applications in the field of precision tumor therapy. In this review, we systematically summarize the new progress in BNDDS used for optimizing drug delivery, providing a theoretical reference for optimizing drug delivery and designing safe and efficient treatment strategies to improve tumor treatment outcomes.
Collapse
Affiliation(s)
- Xiujuan Han
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, 200433, People’s Republic of China
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Chunai Gong
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, People’s Republic of China
| | - Qingru Yang
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, 200433, People’s Republic of China
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Kaile Zheng
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, 200433, People’s Republic of China
| | - Zhuo Wang
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, 200433, People’s Republic of China
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Wei Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
4
|
Jiang H, Tang C, Wen Y, Zhao Q, Xu M, Fan J, Wang Z, Wang L, Xu H, Chen G. Enhanced Antitumor Efficacy of Novel Biomimetic Platelet Membrane-Coated Tetrandrine Nanoparticles in Nonsmall Cell Lung Cancer. Mol Pharm 2023; 20:5463-5475. [PMID: 37823637 DOI: 10.1021/acs.molpharmaceut.3c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Nonsmall cell lung cancer (NSCLC) remains one of the leading causes of cancer-related death worldwide, posing a serious threat to global health. Tetrandrine (Tet) is a small molecule in traditional Chinese medicine with proven primary efficacy against multiple cancers. Although previous studies have demonstrated the potential anticancer effects of Tet on NSCLC, its poor water solubility has limited its further clinical application. Herein, a novel nanoparticle-based drug delivery system, platelet membrane (PLTM)-coated Tet-loaded polycaprolactone-b-poly(ethylene glycol)-b-polycaprolactone nanoparticles (PTeNPs), is proposed to increase the potency of Tet against NSCLC. First, tetrandrine nanoparticles (TeNPs) are created using an emulsion solvent evaporation method, and biomimetic nanoparticles (PTeNPs) are prepared by coating the nanoparticles with PLTMs. When coated with PLTMs, PTeNPs are considerably less phagocytized by macrophages than Tet and TeNPs. In addition, compared with Tet and TeNPs, PTeNPs can significantly inhibit the growth and invasion of NSCLC both in vitro and in vivo. With reliable biosafety, this drug delivery system provides a new method of sustained release and efficient anticancer effects against NSCLC, facilitating the incorporation of Tet in modern nanotechnology.
Collapse
Affiliation(s)
- Hui Jiang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing 210009, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chunming Tang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Wen
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing 210009, China
| | - Qianqian Zhao
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Mingyuan Xu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University Medical School, Nanjing 210093, China
| | - Jinting Fan
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Zhiji Wang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lifeng Wang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University Medical School, Nanjing 210093, China
| | - Huae Xu
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing 210009, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Gang Chen
- General Surgery Department, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210000, China
| |
Collapse
|
5
|
Yang L, Zhang K, Zheng D, Bai Y, Yue D, Wu L, Ling H, Ni S, Zou H, Ye B, Liu C, Deng Y, Liu Q, Li Y, Wang D. Platelet-Based Nanoparticles with Stimuli-Responsive for Anti-Tumor Therapy. Int J Nanomedicine 2023; 18:6293-6309. [PMID: 37954456 PMCID: PMC10637234 DOI: 10.2147/ijn.s436373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
In addition to hemostasis and coagulation, years of studies have proved that platelets are involved in the whole process of tumor progression, including tumor invasion, intravasation, extravasation, and so on. It means that this property of platelets can be used in anti-tumor therapy. However, traditional platelet-based antitumor drugs often cause autologous platelet damage due to lack of targeting, resulting in serious side effects. Therefore, the researchers designed a variety of anti-tumor drug delivery systems based on platelets by targeting platelets or platelet membrane coating. The drug delivery systems have special response modes, which is crucial in the design of nanoparticles. These modes enhance the targeting and improve the anti-tumor effect. Here, we present a review of recent discoveries in the field of the crosstalk between platelets and tumors and the progress of platelet-based anti-tumor nanoparticles.
Collapse
Affiliation(s)
- Linlan Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Kaijiong Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Dongming Zheng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yuxin Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Daifan Yue
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Lichun Wu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Han Ling
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Sujiao Ni
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Haimin Zou
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Bo Ye
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Chang Liu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Yao Deng
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Qiancheng Liu
- Department of Clinical Laboratory of Mianyang People’s Hospital, Mianyang, People’s Republic of China
| | - Yan Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Dongsheng Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| |
Collapse
|