Dong B, Everly RM, Mahapatra S, Carlsen MS, Ma S, Zhang C. Unleashing Precision and Freedom in Optical Manipulation: Software-Assisted Real-Time Precision Opto-Control of Intracellular Molecular Activities and Cell Functions.
BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579709. [PMID:
38405826 PMCID:
PMC10888777 DOI:
10.1101/2024.02.09.579709]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The traditional method in biological science to regulate cell functions often employs chemical interventions, which commonly lack precision in space and time. While optical manipulation offers superior spatial precision, existing technologies are constrained by limitations in flexibility, accuracy, and response time. Here, we present an adaptable and interactive optical manipulation platform that integrates laser scanning, chemical sensing, synchronized multi-laser control, adaptable target selection, flexible decision-making, and real-time monitoring of sample responses. This software-assisted real-time precision opto-control (S-RPOC) platform facilitates automatic target selection driven by optical signals while permitting user-defined manual delineation. It allows the treatment of mobile or stationary targets with varying laser dosages and wavelengths simultaneously at diffraction-limited spatial precision and optimal accuracy. Significantly, S-RPOC showcases versatile capabilities including adaptive photobleaching, comprehensive quantification of protein dynamics, selective organelle perturbation, control of cell division, and manipulation of individual cell behaviors within a population. With its unprecedented spatiotemporal precision and adaptable decision-making, S-RPOC holds the potential for extensive applications in biological science.
Collapse