1
|
Papale F. From the philosophy of measurement to the philosophy of classification: Generalizing the problem of coordination and historical coherentism. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2024; 106:1-11. [PMID: 38850831 DOI: 10.1016/j.shpsa.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 03/13/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
The objective of this paper is twofold. First, I present a framework called historical coherentism (Chang, 2004; Tal, 2016; Van fraassen 2008) and argue that it is the best epistemological framework available to tackle the problem of coordination, an epistemic conundrum that arises with every attempt to provide empirical content to scientific theories, models or statements. Second, I argue that the problem of coordination, which has so far been theorized only in the context of measurement practices (Reichenbach, 1927; Chang, 2001; Tal, 2012; Van fraassen 2008), can be generalized beyond the philosophy of measurement. Specifically, it will be shown that the problem is embodied in classificatory practices and that, consequently, historical coherentism is well suited to analyze these practices as well as metrological ones. As a case study, I look at a contemporary debate in phylogenetics, regarding the evolutionary origin of a newly identified archaeal phylum called Methanonatronarchaeia. Exploring this debate through the lens of historical coherentism provides a detailed understanding of the dynamics of the field and a foothold for critical analyses of the standard rationale used by practitioners.
Collapse
Affiliation(s)
- François Papale
- Université Laval, Faculty of Philosophy, Québec, Canada; Université de Sherbrooke, Department of Microbiology and Infectious Disease, Québec, Canada.
| |
Collapse
|
2
|
Caetano-Anollés G. Are Viruses Taxonomic Units? A Protein Domain and Loop-Centric Phylogenomic Assessment. Viruses 2024; 16:1061. [PMID: 39066224 PMCID: PMC11281659 DOI: 10.3390/v16071061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Virus taxonomy uses a Linnaean-like subsumption hierarchy to classify viruses into taxonomic units at species and higher rank levels. Virus species are considered monophyletic groups of mobile genetic elements (MGEs) often delimited by the phylogenetic analysis of aligned genomic or metagenomic sequences. Taxonomic units are assumed to be independent organizational, functional and evolutionary units that follow a 'natural history' rationale. Here, I use phylogenomic and other arguments to show that viruses are not self-standing genetically-driven systems acting as evolutionary units. Instead, they are crucial components of holobionts, which are units of biological organization that dynamically integrate the genetics, epigenetic, physiological and functional properties of their co-evolving members. Remarkably, phylogenomic analyses show that viruses share protein domains and loops with cells throughout history via massive processes of reticulate evolution, helping spread evolutionary innovations across a wider taxonomic spectrum. Thus, viruses are not merely MGEs or microbes. Instead, their genomes and proteomes conduct cellularly integrated processes akin to those cataloged by the GO Consortium. This prompts the generation of compositional hierarchies that replace the 'is-a-kind-of' by a 'is-a-part-of' logic to better describe the mereology of integrated cellular and viral makeup. My analysis demands a new paradigm that integrates virus taxonomy into a modern evolutionarily centered taxonomy of organisms.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, C. R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Gunasekera RS, Raja KKB, Hewapathirana S, Tundrea E, Gunasekera V, Galbadage T, Nelson PA. ORFanID: A web-based search engine for the discovery and identification of orphan and taxonomically restricted genes. PLoS One 2023; 18:e0291260. [PMID: 37879070 PMCID: PMC10599687 DOI: 10.1371/journal.pone.0291260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/24/2023] [Indexed: 10/27/2023] Open
Abstract
With the numerous genomes sequenced today, it has been revealed that a noteworthy percentage of genes in a given taxon of organisms in the phylogenetic tree of life do not have orthologous sequences in other taxa. These sequences are commonly referred to as "orphans" or "ORFans" if found as single occurrences in a single species or as "taxonomically restricted genes" (TRGs) when found at higher taxonomic levels. Quantitative and collective studies of these genes are necessary for understanding their biological origins. However, the current software for identifying orphan genes is limited in its functionality, database search range, and very complex algorithmically. Thus, researchers studying orphan genes must harvest their data from many disparate sources. ORFanID is a graphical web-based search engine that facilitates the efficient identification of both orphan genes and TRGs at all taxonomic levels, from DNA or amino acid sequences in the NCBI database cluster and other large bioinformatics repositories. The software allows users to identify genes that are unique to any taxonomic rank, from species to domain, using NCBI systematic classifiers. It provides control over NCBI database search parameters, and the results are presented in a spreadsheet as well as a graphical display. The tables in the software are sortable, and results can be filtered using the fuzzy search functionality. The visual presentation can be expanded and collapsed by the taxonomic tree to its various branches. Example results from searches on five species and gene expression data from specific orphan genes are provided in the Supplementary Information.
Collapse
Affiliation(s)
- Richard S. Gunasekera
- Department of Chemistry, Physics and Engineering, School of Science, Technology & Health, Biola University, La Mirada, CA, United States of America
| | - Komal K. B. Raja
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States of America
| | - Suresh Hewapathirana
- European Bioinformatics Institute, Welcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Emanuel Tundrea
- Griffiths School of Management and IT, Emanuel University of Oradea, Oradea, Romania
| | - Vinodh Gunasekera
- Bioinformatics, Chesalon USA, Inc., Houston, TX, United States of America
| | - Thushara Galbadage
- Department of Kinesiology and Public Health, School of Science, Technology & Health, Biola University, La Mirada, CA, United States of America
| | - Paul A. Nelson
- Biola University, La Mirada, CA, United States of America
| |
Collapse
|
4
|
Colson P, Fournier P, Delerce J, Million M, Bedotto M, Houhamdi L, Yahi N, Bayette J, Levasseur A, Fantini J, Raoult D, La Scola B. Culture and identification of a "Deltamicron" SARS-CoV-2 in a three cases cluster in southern France. J Med Virol 2022; 94:3739-3749. [PMID: 35467028 PMCID: PMC9088576 DOI: 10.1002/jmv.27789] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022]
Abstract
Multiple SARS-CoV-2 variants have successively, or concomitantly spread worldwide since the summer of 2020. A few co-infections with different variants were reported and genetic recombinations, common among coronaviruses, were reported or suspected based on co-detection of signature mutations of different variants in a given genome. Here we report three infections in southern France with a Delta 21J_AY.4-Omicron 21K/BA.1 "Deltamicron" recombinant. The hybrid genome harbors signature mutations of the two lineages, supported by a mean sequencing depth of 1163-1421 reads and a mean nucleotide diversity of 0.1%-0.6%. It is composed of the near full-length spike gene (from codons 156-179) of an Omicron 21K/BA.1 variant in a Delta 21J/AY.4 lineage backbone. Importantly, we cultured an isolate of this recombinant and sequenced its genome. It was observed by scanning electron microscopy. As it is misidentified with current variant screening quantitative polymerase chain reaction (qPCR), we designed and implemented for routine diagnosis a specific duplex qPCR. Finally, structural analysis of the recombinant spike suggested its hybrid content could optimize viral binding to the host cell membrane. These findings prompt further studies of the virological, epidemiological, and clinical features of this recombinant.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée InfectionMarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Microbes Evolution Phylogeny and Infections (MEPHI)MarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | - Pierre‐Edouard Fournier
- IHU Méditerranée InfectionMarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Microbes Evolution Phylogeny and Infections (MEPHI)MarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Vecteurs—Infections Tropicales et Méditerranéennes (VITROME)MarseilleFrance
| | | | - Matthieu Million
- IHU Méditerranée InfectionMarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Microbes Evolution Phylogeny and Infections (MEPHI)MarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | | | | | - Nouara Yahi
- Aix‐Marseille Université, INSERM UMR S 1072MarseilleFrance
| | | | - Anthony Levasseur
- IHU Méditerranée InfectionMarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Microbes Evolution Phylogeny and Infections (MEPHI)MarseilleFrance
| | | | - Didier Raoult
- IHU Méditerranée InfectionMarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Microbes Evolution Phylogeny and Infections (MEPHI)MarseilleFrance
| | - Bernard La Scola
- IHU Méditerranée InfectionMarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Microbes Evolution Phylogeny and Infections (MEPHI)MarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| |
Collapse
|
5
|
Candidate Phyla Radiation, an Underappreciated Division of the Human Microbiome, and Its Impact on Health and Disease. Clin Microbiol Rev 2022; 35:e0014021. [PMID: 35658516 DOI: 10.1128/cmr.00140-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Candidate phyla radiation (CPR) is an emerging division of the bacterial domain within the human microbiota. Still poorly known, these microorganisms were first described in the environment in 1981 as "ultramicrobacteria" with a cell volume under 0.1 μm3 and were first associated with the human oral microbiota in 2007. The evolution of technology has been paramount for the study of CPR within the human microbiota. In fact, since these ultramicrobacteria have yet to be axenically cultured despite ongoing efforts, progress in imaging technology has allowed their observation and morphological description. Although their genomic abilities and taxonomy are still being studied, great strides have been made regarding their taxonomic classification, as well as their lifestyle. In addition, advancements in next-generation sequencing and the continued development of bioinformatics tools have allowed their detection as commensals in different human habitats, including the oral cavity and gastrointestinal and genital tracts, thus highlighting CPR as a nonnegligible part of the human microbiota with an impact on physiological settings. Conversely, several pathologies present dysbiosis affecting CPR levels, including inflammatory, mucosal, and infectious diseases. In this exhaustive review of the literature, we provide a historical perspective on the study of CPR, an overview of the methods available to study these organisms and a description of their taxonomy and lifestyle. In addition, their distribution in the human microbiome is presented in both homeostatic and dysbiotic settings. Future efforts should focus on developing cocultures and, if possible, axenic cultures to obtain isolates and therefore genomes that would provide a better understanding of these ultramicrobacteria, the importance of which in the human microbiome is undeniable.
Collapse
|
6
|
Ibrahim A, Colson P, Merhej V, Zgheib R, Maatouk M, Naud S, Bittar F, Raoult D. Rhizomal Reclassification of Living Organisms. Int J Mol Sci 2021; 22:5643. [PMID: 34073251 PMCID: PMC8199106 DOI: 10.3390/ijms22115643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/14/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022] Open
Abstract
Living organisms interact with each other during their lifetime, leading to genomes rearrangement and sequences transfer. These well-known phenomena give these organisms mosaic genomes, which challenge their classification. Moreover, many findings occurred between the IXXth and XXIst century, especially the discovery of giant viruses and candidate phyla radiation (CPR). Here, we tried to provide an updated classification, which integrates 216 representative genomes of the current described organisms. The reclassification was expressed through a genetic network based on the total genomic content, not on a single gene to represent the tree of life. This rhizomal exploration represents, more accurately, the evolutionary relationships among the studied species. Our analyses show a separated branch named fifth TRUC (Things Resisting Uncompleted Classifications). This taxon groups CPRs together, independently from Bacteria, Archaea (which regrouped also Nanoarchaeota and Asgard members), Eukarya, and the giant viruses (recognized recently as fourth TRUC). Finally, the broadening of analysis methods will lead to the discovery of new organisms, which justify the importance of updating the classification at every opportunity. In this perspective, our pragmatic representation could be adjusted along with the progress of evolutionary studies.
Collapse
Affiliation(s)
- Ahmad Ibrahim
- IHU Méditerranée Infection, 13005 Marseille, France; (A.I.); (P.C.); (V.M.); (R.Z.); (M.M.); (S.N.)
- Aix-Marseille Université, IRD, APHM, MEPHI, 13005 Marseille, France
| | - Philippe Colson
- IHU Méditerranée Infection, 13005 Marseille, France; (A.I.); (P.C.); (V.M.); (R.Z.); (M.M.); (S.N.)
- Aix-Marseille Université, IRD, APHM, MEPHI, 13005 Marseille, France
| | - Vicky Merhej
- IHU Méditerranée Infection, 13005 Marseille, France; (A.I.); (P.C.); (V.M.); (R.Z.); (M.M.); (S.N.)
- Aix-Marseille Université, IRD, APHM, MEPHI, 13005 Marseille, France
| | - Rita Zgheib
- IHU Méditerranée Infection, 13005 Marseille, France; (A.I.); (P.C.); (V.M.); (R.Z.); (M.M.); (S.N.)
- Aix-Marseille Université, IRD, APHM, SSA, VITROME, 13005 Marseille, France
| | - Mohamad Maatouk
- IHU Méditerranée Infection, 13005 Marseille, France; (A.I.); (P.C.); (V.M.); (R.Z.); (M.M.); (S.N.)
- Aix-Marseille Université, IRD, APHM, MEPHI, 13005 Marseille, France
| | - Sabrina Naud
- IHU Méditerranée Infection, 13005 Marseille, France; (A.I.); (P.C.); (V.M.); (R.Z.); (M.M.); (S.N.)
- Aix-Marseille Université, IRD, APHM, MEPHI, 13005 Marseille, France
| | - Fadi Bittar
- IHU Méditerranée Infection, 13005 Marseille, France; (A.I.); (P.C.); (V.M.); (R.Z.); (M.M.); (S.N.)
- Aix-Marseille Université, IRD, APHM, MEPHI, 13005 Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 13005 Marseille, France; (A.I.); (P.C.); (V.M.); (R.Z.); (M.M.); (S.N.)
- Aix-Marseille Université, IRD, APHM, MEPHI, 13005 Marseille, France
| |
Collapse
|
7
|
Khedher MB, Baron SA, Riziki T, Ruimy R, Raoult D, Diene SM, Rolain JM. Massive analysis of 64,628 bacterial genomes to decipher water reservoir and origin of mobile colistin resistance genes: is there another role for these enzymes? Sci Rep 2020; 10:5970. [PMID: 32249837 PMCID: PMC7136264 DOI: 10.1038/s41598-020-63167-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 11/09/2022] Open
Abstract
Since 2015, new worrying colistin resistance mechanism, mediated by mcr-1 gene has been reported worldwide along with eight newly described variants but their source(s) and reservoir(s) remain largely unexplored. Here, we conducted a massive bioinformatic analysis of bacterial genomes to investigate the reservoir and origin of mcr variants. We identified 13'658 MCR-1 homologous sequences in 494 bacterial genera. Moreover, analysis of 64'628 bacterial genomes (60 bacterial genera and 1'047 species) allows identifying a total of 6'651 significant positive hits (coverage >90% and similarity >50%) with the nine MCR variants from 39 bacterial genera and more than 1'050 species. A high number of MCR-1 was identified in Escherichia coli (n = 862). Interestingly, while almost all variants were identified in bacteria from different sources (i.e. human, animal, and environment), the last variant, MCR-9, was exclusively detected in bacteria from human. Although these variants could be identified in bacteria from human and animal sources, we found plenty MCR variants in unsuspected bacteria from environmental origin, especially from water sources. The ubiquitous presence of mcr variants in bacteria from water likely suggests another role in the biosphere of these enzymes as an unknown defense system against natural antimicrobial peptides and/or bacteriophage predation.
Collapse
Affiliation(s)
- Mariem Ben Khedher
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France
| | - Sophie Alexandra Baron
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France
- IHU-Mediterranee Infection, Marseille, France
| | - Toilhata Riziki
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France
| | - Raymond Ruimy
- Centre Hospitalier Universitaire de Nice, Laboratoire de bactériologie, Nice, France
| | - Didier Raoult
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France
- IHU-Mediterranee Infection, Marseille, France
| | - Seydina M Diene
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France.
- IHU-Mediterranee Infection, Marseille, France.
| | - Jean-Marc Rolain
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France.
- IHU-Mediterranee Infection, Marseille, France.
| |
Collapse
|
8
|
Papale F, Saget J, Bapteste É. Networks Consolidate the Core Concepts of Evolution by Natural Selection. Trends Microbiol 2019; 28:254-265. [PMID: 31866140 DOI: 10.1016/j.tim.2019.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
Microbiology has unraveled rich evidence of ongoing reticulate evolutionary processes and complex interactions both within and between cells. These phenomena feature real biological networks, which can logically be analyzed using network-based tools. It is thus not surprising that network sciences, a field independent from evolutionary biology and microbiology, have recently pervasively infused their methods into both fields. Importantly, network tools bring forward observations enhancing the understanding of three core evolutionary concepts: variation, fitness, and heredity. Consequently, our work shows how network sciences can enhance evolutionary theory by explaining the evolution by natural selection of a broad diversity of units of selection, while updating the popular figure of Darwin's tree of life with a comprehensive sketch of the networks of evolution.
Collapse
Affiliation(s)
- François Papale
- Departement of Philosophy, University of Montreal, Montréal, QC, H3C 3J7, Canada; Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, 75005 Paris, France
| | - Jordane Saget
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, 75005 Paris, France
| | - Éric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, 75005 Paris, France.
| |
Collapse
|
9
|
Salvucci E. The human-microbiome superorganism and its modulation to restore health. Int J Food Sci Nutr 2019; 70:781-795. [DOI: 10.1080/09637486.2019.1580682] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- E. Salvucci
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC-CONICET-UNC), Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales; Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba
| |
Collapse
|
10
|
Miller WB. Biological information systems: Evolution as cognition-based information management. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 134:1-26. [PMID: 29175233 DOI: 10.1016/j.pbiomolbio.2017.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023]
Abstract
An alternative biological synthesis is presented that conceptualizes evolutionary biology as an epiphenomenon of integrated self-referential information management. Since all biological information has inherent ambiguity, the systematic assessment of information is required by living organisms to maintain self-identity and homeostatic equipoise in confrontation with environmental challenges. Through their self-referential attachment to information space, cells are the cornerstone of biological action. That individualized assessment of information space permits self-referential, self-organizing niche construction. That deployment of information and its subsequent selection enacted the dominant stable unicellular informational architectures whose biological expressions are the prokaryotic, archaeal, and eukaryotic unicellular forms. Multicellularity represents the collective appraisal of equivocal environmental information through a shared information space. This concerted action can be viewed as systematized information management to improve information quality for the maintenance of preferred homeostatic boundaries among the varied participants. When reiterated in successive scales, this same collaborative exchange of information yields macroscopic organisms as obligatory multicellular holobionts. Cognition-Based Evolution (CBE) upholds that assessment of information precedes biological action, and the deployment of information through integrative self-referential niche construction and natural cellular engineering antecedes selection. Therefore, evolutionary biology can be framed as a complex reciprocating interactome that consists of the assessment, communication, deployment and management of information by self-referential organisms at multiple scales in continuous confrontation with environmental stresses.
Collapse
|
11
|
Ordu O, Lusser A, Dekker NH. Recent insights from in vitro single-molecule studies into nucleosome structure and dynamics. Biophys Rev 2016; 8:33-49. [PMID: 28058066 PMCID: PMC5167136 DOI: 10.1007/s12551-016-0212-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/17/2016] [Indexed: 01/04/2023] Open
Abstract
Eukaryotic DNA is tightly packed into a hierarchically ordered structure called chromatin in order to fit into the micron-scaled nucleus. The basic unit of chromatin is the nucleosome, which consists of a short piece of DNA wrapped around a core of eight histone proteins. In addition to their role in packaging DNA, nucleosomes impact the regulation of essential nuclear processes such as replication, transcription, and repair by controlling the accessibility of DNA. Thus, knowledge of this fundamental DNA-protein complex is crucial for understanding the mechanisms of gene control. While structural and biochemical studies over the past few decades have provided key insights into both the molecular composition and functional aspects of nucleosomes, these approaches necessarily average over large populations and times. In contrast, single-molecule methods are capable of revealing features of subpopulations and dynamic changes in the structure or function of biomolecules, rendering them a powerful complementary tool for probing mechanistic aspects of DNA-protein interactions. In this review, we highlight how these single-molecule approaches have recently yielded new insights into nucleosomal and subnucleosomal structures and dynamics.
Collapse
Affiliation(s)
- Orkide Ordu
- Bionanoscience Department, Kavli Institute of Nanoscience,, Delft University of Technology, Van der Maasweg 9,, 2629 HZ Delft, The Netherlands
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Nynke H. Dekker
- Bionanoscience Department, Kavli Institute of Nanoscience,, Delft University of Technology, Van der Maasweg 9,, 2629 HZ Delft, The Netherlands
| |
Collapse
|
12
|
Gupta RS. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. FEMS Microbiol Rev 2016; 40:520-53. [PMID: 27279642 DOI: 10.1093/femsre/fuw011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/24/2022] Open
Abstract
Analyses of genome sequences, by some approaches, suggest that the widespread occurrence of horizontal gene transfers (HGTs) in prokaryotes disguises their evolutionary relationships and have led to questioning of the Darwinian model of evolution for prokaryotes. These inferences are critically examined in the light of comparative genome analysis, characteristic synapomorphies, phylogenetic trees and Darwin's views on examining evolutionary relationships. Genome sequences are enabling discovery of numerous molecular markers (synapomorphies) such as conserved signature indels (CSIs) and conserved signature proteins (CSPs), which are distinctive characteristics of different prokaryotic taxa. Based on these molecular markers, exhibiting high degree of specificity and predictive ability, numerous prokaryotic taxa of different ranks, currently identified based on the 16S rRNA gene trees, can now be reliably demarcated in molecular terms. Within all studied groups, multiple CSIs and CSPs have been identified for successive nested clades providing reliable information regarding their hierarchical relationships and these inferences are not affected by HGTs. These results strongly support Darwin's views on evolution and classification and supplement the current phylogenetic framework based on 16S rRNA in important respects. The identified molecular markers provide important means for developing novel diagnostics, therapeutics and for functional studies providing important insights regarding prokaryotic taxa.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
13
|
Kim KM, Nasir A, Hwang K, Caetano-Anollés G. A tree of cellular life inferred from a genomic census of molecular functions. J Mol Evol 2014; 79:240-62. [PMID: 25128982 DOI: 10.1007/s00239-014-9637-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
Phylogenomics aims to describe evolutionary relatedness between organisms by analyzing genomic data. The common practice is to produce phylogenomic trees from molecular information in the sequence, order, and content of genes in genomes. These phylogenies describe the evolution of life and become valuable tools for taxonomy. The recent availability of structural and functional data for hundreds of genomes now offers the opportunity to study evolution using more deep, conserved, and reliable sets of molecular features. Here, we reconstruct trees of life from the functions of proteins. We start by inferring rooted phylogenomic trees and networks of organisms directly from Gene Ontology annotations. Phylogenies and networks yield novel insights into the emergence and evolution of cellular life. The ancestor of Archaea originated earlier than the ancestors of Bacteria and Eukarya and was thermophilic. In contrast, basal bacterial lineages were non-thermophilic. A close relationship between Plants and Metazoa was also identified that disagrees with the traditional Fungi-Metazoa grouping. While measures of evolutionary reticulation were minimum in Eukarya and maximum in Bacteria, the massive role of horizontal gene transfer in microbes did not materialize in phylogenomic networks. Phylogenies and networks also showed that the best reconstructions were recovered when problematic taxa (i.e., parasitic/symbiotic organisms) and horizontally transferred characters were excluded from analysis. Our results indicate that functionomic data represent a useful addition to the set of molecular characters used for tree reconstruction and that trees of cellular life carry in deep branches considerable predictive power to explain the evolution of living organisms.
Collapse
Affiliation(s)
- Kyung Mo Kim
- Microbial Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea
| | | | | | | |
Collapse
|
14
|
|
15
|
Gupta RS. Identification of Conserved Indels that are Useful for Classification and Evolutionary Studies. J Microbiol Methods 2014. [DOI: 10.1016/bs.mim.2014.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Wolf YI, Koonin EV. Genome reduction as the dominant mode of evolution. Bioessays 2013; 35:829-37. [PMID: 23801028 PMCID: PMC3840695 DOI: 10.1002/bies.201300037] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/21/2013] [Indexed: 11/09/2022]
Abstract
A common belief is that evolution generally proceeds towards greater complexity at both the organismal and the genomic level, numerous examples of reductive evolution of parasites and symbionts notwithstanding. However, recent evolutionary reconstructions challenge this notion. Two notable examples are the reconstruction of the complex archaeal ancestor and the intron-rich ancestor of eukaryotes. In both cases, evolution in most of the lineages was apparently dominated by extensive loss of genes and introns, respectively. These and many other cases of reductive evolution are consistent with a general model composed of two distinct evolutionary phases: the short, explosive, innovation phase that leads to an abrupt increase in genome complexity, followed by a much longer reductive phase, which encompasses either a neutral ratchet of genetic material loss or adaptive genome streamlining. Quantitatively, the evolution of genomes appears to be dominated by reduction and simplification, punctuated by episodes of complexification.
Collapse
Affiliation(s)
- Yuri I Wolf
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MA, USA.
| | | |
Collapse
|
17
|
Raoult D, Koonin EV. Microbial genomics challenge Darwin. Front Cell Infect Microbiol 2012; 2:127. [PMID: 23091803 PMCID: PMC3469792 DOI: 10.3389/fcimb.2012.00127] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 11/13/2022] Open
Affiliation(s)
- Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Faculté de Médecine, CNRS UMR 6236, IRD 198, Aix Marseille UniversitéMarseille, France
- *Correspondence:
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of MedicineBethesda, MD, USA
| |
Collapse
|