1
|
Alfahl Z, Biggins S, Higgins O, Chueiri A, Smith TJ, Morris D, O'Dwyer J, Hynds PD, Burke LP, O’Connor L. A rapid on-site loop-mediated isothermal amplification technology as an early warning system for the detection of Shiga toxin-producing Escherichia coli in water. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001485. [PMID: 39109421 PMCID: PMC11304963 DOI: 10.1099/mic.0.001485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an important waterborne pathogen capable of causing serious gastrointestinal infections with potentially fatal complications, including haemolytic-uremic syndrome. All STEC serogroups harbour genes that encode at least one Shiga toxin (stx1 and/or stx2), which constitute the primary virulence factors of STEC. Loop-mediated isothermal amplification (LAMP) enables rapid real-time pathogen detection with a high degree of specificity and sensitivity. The aim of this study was to develop and validate an on-site portable diagnostics workstation employing LAMP technology to permit rapid real-time STEC detection in environmental water samples. Water samples (n=28) were collected from groundwater wells (n=13), rivers (n=12), a turlough (n=2) and an agricultural drain (n=1) from the Corrib catchment in Galway. Water samples (100 ml) were passed through a 0.22 µm filter, and buffer was added to elute captured cells. Following filtration, eluates were tested directly using LAMP assays targeting stx1, stx2 and E. coli phoA genes. The portable diagnostics workstation was used in field studies to demonstrate the on-site testing capabilities of the instrument. Real-time PCR assays targeting stx1 and stx2 genes were used to confirm the results. The limit of detection for stx1, stx2 and phoA LAMP assays were 2, 2 and 6 copies, respectively. Overall, stx1, stx2 and phoA genes were detected by LAMP in 15/28 (53.6 %), 9/28 (32.2 %) and 24/28 (85.7 %) samples, respectively. For confirmation, the LAMP results for stx1 and stx2 correlated perfectly (100 %) with those obtained using PCR. The portable diagnostics workstation exhibited high sensitivity throughout the on-site operation, and the average time from sample collection to final result was 40 min. We describe a simple, transferable and efficient diagnostic technology for on-site molecular analysis of various water sources. This method allows on-site testing of drinking water, enabling evidence-based decision-making by public health and water management authorities.
Collapse
Affiliation(s)
- Zina Alfahl
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Sean Biggins
- Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
- Molecular Diagnostics Research Group, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Owen Higgins
- Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
- Molecular Diagnostics Research Group, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Alexandra Chueiri
- Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
- Molecular Diagnostics Research Group, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Terry J. Smith
- Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
- Molecular Diagnostics Research Group, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Jean O'Dwyer
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Irish Centre for Research in Applied Geosciences (iCRAG), University College Dublin, Dublin, Ireland
| | - Paul D. Hynds
- Irish Centre for Research in Applied Geosciences (iCRAG), University College Dublin, Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
| | - Liam P. Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Louise O’Connor
- Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
- Molecular Diagnostics Research Group, College of Science and Engineering, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Castro VS, Ngo S, Stanford K. Influence of temperature and pH on induction of Shiga toxin Stx1a in Escherichia coli. Front Microbiol 2023; 14:1181027. [PMID: 37485504 PMCID: PMC10359099 DOI: 10.3389/fmicb.2023.1181027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Shiga toxin-producing strains represent pathogenic group that is of concern in food production. The present study evaluated forty-eight E. coli isolates (11 with intact stx gene, while remaining isolates presented only stx-fragments) for Shiga toxin production. The four most expressive stx-producers (O26, O103, O145, and O157) were selected to evaluate effects of pH (3.5, 4.5, and 7) and temperature (35, 40, and 50°C). After determining acid stress effects in media on Stx-induction, we mimicked "in natura" conditions using milk, apple, and orange juices. Only isolates that showed the presence of intact stx gene (11/48) produced Shiga toxin. In addition, acid pH had a role in down-regulating the production of Shiga toxin, in both lactic acid and juices. In contrast, non-lethal heating (40°C), when in neutral pH and milk was a favorable environment to induce Shiga toxin. Lastly, two isolates (O26 and O103) showed a higher capacity to produce Shiga toxin and were included in a genomic cluster with other E. coli involved in worldwide foodborne outbreaks. The induction of this toxin when subjected to 40°C may represent a potential risk to the consumer, since the pathogenic effect of oral ingestion of Shiga toxin has already been proved in an animal model.
Collapse
|
3
|
Söderlund R, Flink C, Aspán A, Eriksson E. Shiga toxin-producing Escherichia coli (STEC) and atypical enteropathogenic E. coli (aEPEC) in Swedish retail wheat flour. Access Microbiol 2023; 5:acmi000577.v3. [PMID: 37323947 PMCID: PMC10267659 DOI: 10.1099/acmi.0.000577.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/11/2023] [Indexed: 06/17/2023] Open
Abstract
Wheat flour has been identified as the source of multiple outbreaks of gastrointestinal disease caused by shiga toxin-producing Escherichia coli (STEC). We have investigated the presence and genomic characteristics of STEC and related atypical enteropathogenic E. coli (aEPEC) in 200 bags of Swedish-produced retail wheat flour, representing 87 products and 25 brands. Samples were enriched in modified tryptone soya broth (mTSB) and screened with real-time PCR targeting stx1, stx2 and eae, and the serogroups O157, O121 and O26. Isolation was performed by immunomagnetic separation (IMS) for suspected STEC/aEPEC O157, O121 and O26, and by screening pools of colonies for other STEC. Real-time PCR after enrichment revealed 12 % of samples to be positive for shiga toxin genes (stx1 and/or stx2) and 11 % to be positive for intimin (eae). Organic production, small-scale production or whole grain did not significantly influence shiga toxin gene presence or absence in a generalized linear mixed model analysis. Eight isolates of STEC were recovered, all of which were intimin-negative. Multiple serotype/sequence type/shiga toxin subtype combinations that have also been found in flour samples in other European countries were recovered. Most STEC types recovered were associated with sporadic cases of STEC among humans in Sweden, but no types known to have caused outbreaks or severe cases of disease (i.e. haemolytic uraemic syndrome) were found. The most common finding was O187:H28 ST200 with stx2g, with possible links to cervid hosts. Wildlife associated with crop damage is a plausible explanation for at least some of the surprisingly high frequency of STEC in wheat flour.
Collapse
Affiliation(s)
- Robert Söderlund
- Department of Microbiology, Swedish National Veterinary Institute (SVA), Uppsala, Sweden
| | - Catarina Flink
- Department of Biology, Swedish Food Agency, Uppsala, Sweden
| | - Anna Aspán
- Department of Microbiology, Swedish National Veterinary Institute (SVA), Uppsala, Sweden
| | - Erik Eriksson
- Department of Microbiology, Swedish National Veterinary Institute (SVA), Uppsala, Sweden
| |
Collapse
|
4
|
Willis C, McLAUCHLIN J, Aird H, Jørgensen F, Lai S, Sadler-Reeves L. Assessment of the Microbiological Quality and Safety of Unpasteurized Milk Cheese for Sale in England between 2019 and 2020. J Food Prot 2022; 85:278-286. [PMID: 34669925 DOI: 10.4315/jfp-21-247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/18/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Cheese made with unpasteurized milk has been associated with outbreaks of illness. However, there are limited data on the prevalence of Shiga toxin-producing Escherichia coli (STEC) in these products and a lack of clarity over the significance of E. coli as a general indicator of hygiene in raw milk cheeses. The aim of this study was to provide further data to address both of these issues, as well as assessing the overall microbiological quality of raw milk cheeses available to consumers in England. A total of 629 samples of cheese were collected from retailers, catering premises, and manufacturers throughout England. The majority (80%) were made using cow's milk, with 14% made from sheep's milk and 5% from goat's milk. Samples were from 18 different countries of origin, with the majority originating from either the United Kingdom (40%) or France (35%). When interpreted against European Union microbiological criteria and United Kingdom guidance, 82% were considered to be of satisfactory microbiological quality, 5% were borderline, and 12% were unsatisfactory. Four samples (0.6%) were potentially injurious to health due to the isolation of STEC from one, >104 CFU/g of coagulase-positive staphylococci in two, and >100 CFU/g of Listeria monocytogenes in the fourth sample. Indicator E. coli and Listeria species were detected more frequently in soft compared with hard cheese. Higher levels of indicator E. coli were significantly associated with a greater likelihood of detecting Shiga toxin genes (stx1 and/or stx2). HIGHLIGHTS
Collapse
Affiliation(s)
- C Willis
- UK Health Security Agency, Food Water and Environmental Microbiology Laboratory Porton, Manor Farm Road, Porton Down, Salisbury, UK SP4 0JG
| | - J McLAUCHLIN
- UK Health Security Agency, Food Water and Environmental Microbiology Services, Colindale Avenue, Colindale, London, UK NW9 5EQ
| | - H Aird
- UK Health Security Agency, Food Water and Environmental Microbiology Laboratory York, National Agri-Food Innovation Campus, Sand Hutton, York, UK YO41 1LZ
| | - F Jørgensen
- UK Health Security Agency, Food Water and Environmental Microbiology Laboratory Porton, Manor Farm Road, Porton Down, Salisbury, UK SP4 0JG
| | - S Lai
- UK Health Security Agency, Food Water and Environmental Microbiology Services, Colindale Avenue, Colindale, London, UK NW9 5EQ
| | - L Sadler-Reeves
- UK Health Security Agency, Field Services, South East, Level 2, Civic Centre, Tannery Lane, Ashford, UK TN23 1PL
| |
Collapse
|
5
|
Elsayed MSAE, Eldsouky SM, Roshdy T, Bayoume AMA, Nasr GM, Salama ASA, Akl BA, Hasan AS, Shahat AK, Khashaba RA, Abdelhalim WA, Nasr HE, Mohammed LA, Salah A. Genetic and antimicrobial resistance profiles of non-O157 Shiga toxin-producing Escherichia coli from different sources in Egypt. BMC Microbiol 2021; 21:257. [PMID: 34556033 PMCID: PMC8461963 DOI: 10.1186/s12866-021-02308-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/28/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The Shiga toxin-producing Escherichia coli (STEC) represented a great risk to public health. In this study, 60 STEC strains recovered from broiler and duck fecal samples, cow's milk, cattle beef, human urine, and ear discharge were screened for 12 virulence genes, phenotypic and genotypic antimicrobial resistance, and multiple-locus variable-number tandem-repeat analysis (MLVA). RESULTS The majority of strains harbored Shiga toxin 1 (stx1) and stx1d, stx2 and stx2e, and ehxA genes, while a minority harbored stx2c subtype and eaeA. We identified 10 stx gene combinations; most of strains 31/60 (51.7%) exhibited four copies of stx genes, namely the stx1, stx1d, stx2, and stx2e, and the strains exhibited a high range of multiple antimicrobial resistance indices. The resistance genes blaCTX-M-1 and blaTEM were detected. For the oxytetracycline resistance genes, most of strains contained tetA, tetB, tetE, and tetG while the tetC was present at low frequency. MLVA genotyping resolved 26 unique genotypes; genotype 21 was highly prevalent. The six highly discriminatory loci DI = 0.9138 are suitable for the preliminary genotyping of STEC from animals and humans. CONCLUSIONS The STEC isolated from animals are virulent, resistant to antimicrobials, and genetically diverse, thus demands greater attention for the potential risk to human.
Collapse
Affiliation(s)
- Mohamed Sabry Abd Elraheam Elsayed
- Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt.
| | - Samah Mahmoud Eldsouky
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, Benha University, Benha, Egypt
| | - Tamer Roshdy
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Abeer Mohamed Ahmed Bayoume
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Ghada M Nasr
- Department of Molecular Diagnostics, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, 32897, Egypt
| | - Ali S A Salama
- Microbiology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Behiry A Akl
- Microbiology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Al Shaimaa Hasan
- Department of Medical Pharmacology, Qena Faculty of Medicine, South Valley University, Qena, Egypt
| | - Amany Kasem Shahat
- Department of Medical Microbiology and Immunology, Benha University, Benha, Egypt
| | - Rana Atef Khashaba
- Department of Clinical Pathology and Chemistry, Benha Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Hend E Nasr
- Department of Medical Biochemistry and Molecular Biology, Benha University, Benha, Egypt
| | | | - Ahmed Salah
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt
| |
Collapse
|
6
|
A Validation System for Selection of Bacteriophages against Shiga Toxin-Producing Escherichia coli Contamination. Toxins (Basel) 2021; 13:toxins13090644. [PMID: 34564648 PMCID: PMC8470416 DOI: 10.3390/toxins13090644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/28/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) can cause severe infections in humans, leading to serious diseases and dangerous complications, such as hemolytic-uremic syndrome. Although cattle are a major reservoir of STEC, the most commonly occurring source of human infections are food products (e.g., vegetables) contaminated with cow feces (often due to the use of natural fertilizers in agriculture). Since the use of antibiotics against STEC is controversial, other methods for protection of food against contaminations by these bacteria are required. Here, we propose a validation system for selection of bacteriophages against STEC contamination. As a model system, we have employed a STEC-specific bacteriophage vB_Eco4M-7 and the E. coli O157:H7 strain no. 86-24, bearing Shiga toxin-converting prophage ST2-8624 (Δstx2::cat gfp). When these bacteria were administered on the surface of sliced cucumber (as a model vegetable), significant decrease in number viable E. coli cells was observed after 6 h of incubation. No toxicity of vB_Eco4M-7 against mammalian cells (using the Balb/3T3 cell line as a model) was detected. A rapid decrease of optical density of STEC culture was demonstrated following addition of a vB_Eco4M-7 lysate. However, longer incubation of susceptible bacteria with this bacteriophage resulted in the appearance of phage-resistant cells which predominated in the culture after 24 h incubation. Interestingly, efficiency of selection of bacteria resistant to vB_Eco4M-7 was higher at higher multiplicity of infection (MOI); the highest efficiency was evident at MOI 10, while the lowest occurred at MOI 0.001. A similar phenomenon of selection of the phage-resistant bacteria was also observed in the experiment with the STEC-contaminated cucumber after 24 h incubation with phage lysate. On the other hand, bacteriophage vB_Eco4M-7 could efficiently develop in host bacterial cells, giving plaques at similar efficiency of plating at 37, 25 and 12 °C, indicating that it can destroy STEC cells at the range of temperatures commonly used for vegetable short-term storage. These results indicate that bacteriophage vB_Eco4M-7 may be considered for its use in food protection against STEC contamination; however, caution should be taken due to the phenomenon of the appearance of phage-resistant bacteria.
Collapse
|
7
|
Castro VS, Ortega Polo R, Figueiredo EEDS, Bumunange EW, McAllister T, King R, Conte-Junior CA, Stanford K. Inconsistent PCR detection of Shiga toxin-producing Escherichia coli: Insights from whole genome sequence analyses. PLoS One 2021; 16:e0257168. [PMID: 34478476 PMCID: PMC8415614 DOI: 10.1371/journal.pone.0257168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/25/2021] [Indexed: 01/10/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) have been linked to food-borne disease outbreaks. As PCR is routinely used to screen foods for STEC, it is important that factors leading to inconsistent detection of STEC by PCR are understood. This study used whole genome sequencing (WGS) to investigate causes of inconsistent PCR detection of stx1, stx2, and serogroup-specific genes. Fifty strains isolated from Alberta feedlot cattle from three different studies were selected with inconsistent or consistent detection of stx and serogroup by PCR. All isolates were initially classified as STEC by PCR. Sequencing was performed using Illumina MiSeq® with sample library by Nextera XT. Virtual PCRs were performed using Geneious and bacteriophage content was determined using PHASTER. Sequencing coverage ranged from 47 to 102x, averaging 74x, with sequences deposited in the NCBI database. Eleven strains were confirmed by WGS as STEC having complete stxA and stxB subunits. However, truncated stx fragments occurred in twenty-two other isolates, some having multiple stx fragments in the genome. Isolates with complete stx by WGS had consistent stx1 and stx2 detection by PCR, although one also having a stx2 fragment had inconsistent stx2 PCR. For all STEC and 18/39 non-STEC, serogroups determined by PCR agreed with those determined by WGS. An additional three WGS serotypes were inconclusive and two isolates were Citrobacter spp. Results demonstrate that stx fragments associated with stx-carrying bacteriophages in the E. coli genome may contribute to inconsistent detection of stx1 and stx2 by PCR. Fourteen isolates had integrated stx bacteriophage but lacked complete or fragmentary stx possibly due to partial bacteriophage excision after sub-cultivation or other unclear mechanisms. The majority of STEC isolates (7/11) did not have identifiable bacteriophage DNA in the contig(s) where stx was located, likely increasing the stability of stx in the bacterial genome and its detection by PCR.
Collapse
Affiliation(s)
- Vinicius Silva Castro
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Food and Nutrition, Federal University of Mato Grosso, Cuiaba, Brazil
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Rodrigo Ortega Polo
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | | | | | - Tim McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | - Robin King
- Alberta Agriculture and Forestry, Edmonton, Canada
| | | | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
8
|
Węgrzyn G, Muniesa M. Editorial: Shiga Toxin-Converting Bacteriophages. Front Microbiol 2021; 12:680816. [PMID: 34017320 PMCID: PMC8129015 DOI: 10.3389/fmicb.2021.680816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022] Open
Affiliation(s)
- Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Fernández L, Duarte AC, Rodríguez A, García P. The relationship between the phageome and human health: are bacteriophages beneficial or harmful microbes? Benef Microbes 2021; 12:107-120. [PMID: 33789552 DOI: 10.3920/bm2020.0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the context of the global antibiotic resistance crisis, bacteriophages are increasingly becoming promising antimicrobial agents against multi-resistant bacteria. Indeed, a huge effort is being made to bring phage-derived products to the market, a process that will also require revising the current regulations in order to facilitate their approval. However, despite the evidence supporting the safety of phages for humans, the general public would still be reluctant to use 'viruses' for therapeutic purposes. In this scenario, we consider that it is important to discuss the role of these microorganisms in the equilibrium of the microbiota and how this relates to human health. To do that, this review starts by examining the role of phages as key players in bacterial communities (including those that naturally inhabit the human body), modulating the species composition and contributing to maintain a 'healthy' status quo. Additionally, in specific situations, e.g. an infectious disease, bacteriophages can be used as target-specific antimicrobials against pathogenic bacteria (phage therapy), while being harmless to the desirable microbiota. Apart from that, incipient research shows the potential application of these viruses to treat diseases caused by bacterial dysbiosis. This latter application would be comparable to the use of probiotics or prebiotics, since bacteriophages can indirectly improve the growth of beneficial bacteria in the gastrointestinal tract by removing undesirable competitors. On the other hand, possible adverse effects do not appear to be an impediment to promote phage therapy. Nonetheless, it is important to remember their potentially negative impact, mainly concerning their immunogenicity or their potential spread of virulence and antibiotic resistance genes, especially by temperate phages. Overall, we believe that phages should be largely considered beneficial microbes, although it is paramount not to overlook their potential risks.
Collapse
Affiliation(s)
- L Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.,DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| | - A C Duarte
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.,DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| | - A Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.,DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| | - P García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.,DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| |
Collapse
|
10
|
Evaluation of Cattle for Naturally Colonized Shiga Toxin-Producing Escherichia coli Requires Combinatorial Strategies. Int J Microbiol 2021; 2021:6673202. [PMID: 33868404 PMCID: PMC8032530 DOI: 10.1155/2021/6673202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/06/2021] [Accepted: 03/21/2021] [Indexed: 01/01/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) serogroups O157, O26, O103, O111, O121, O145, and O45 are designated as food adulterants by the U.S. Department of Agriculture-Food Safety and Inspection Service. Cattle are the primary reservoir of these human pathogens. In this study, 59 Angus crossbred heifers were tested specifically for these seven STEC serogroups using a combination of standard culture, serological, PCR, and cell cytotoxicity methods to determine if comparable results would be obtained. At the time of fecal sampling, the animals were approximately 2 years old and weighed 1000–1200 lbs. The diet comprised of 37% ground alfalfa hay, 25% ground Sudan hay, and 38% ground corn supplemented with trace minerals and rumensin with ad libitum access to water. Non-O157 STEC were isolated from 25% (15/59) of the animals tested using a combination of EC broth, CHROMagar STECTM, and Rainbow Agar O157. Interestingly, the O157 serogroup was not isolated from any of the animals. Non-O157 STEC isolates were confirmed to be one of the six adulterant serogroups by serology and/or colony PCR in 10/15 animals with the predominant viable, serogroup being O103. PCR using DNA extracted from feces verified most of the colony PCR results but also identified additional virulence and O-antigen genes from samples with no correlating culture results. Shiga toxin- (Stx-) related cytopathic effects on Vero cells with fecal extracts from 55/59 animals could only be associated with the Stx gene profiles obtained by fecal DNA PCR and not culture results. The differences between culture versus fecal DNA PCR and cytotoxicity assay results suggest that the latter two assays reflect the presence of nonviable STEC or infection with STEC not belonging to the seven adulterant serogroups. This study further supports the use of combinatorial culture, serology, and PCR methods to isolate viable STEC that pose a greater food safety threat.
Collapse
|
11
|
Spilsberg B, Sekse C, Urdahl AM, Nesse LL, Johannessen GS. Persistence of a Stx-Encoding Bacteriophage in Minced Meat Investigated by Application of an Improved DNA Extraction Method and Digital Droplet PCR. Front Microbiol 2021; 11:581575. [PMID: 33552009 PMCID: PMC7855172 DOI: 10.3389/fmicb.2020.581575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/01/2020] [Indexed: 12/01/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens with Shiga toxins as the main virulence factor. Shiga toxins are encoded on Shiga toxin-encoding bacteriophages (Stx phages). Stx phages may exist as free bacteriophages in the environment or in foods or as prophages integrated into the host genome. From a food safety perspective, it is important to have knowledge on the survival and persistence of Stx phages in food products since these may integrate into the bacterial hosts through transduction if conditions are right. Here, we present the results from a study investigating the survival of a Stx phage in minced meat from beef stored at a suboptimal temperature (8°C) for food storage along with modifications and optimizations of the methods applied. Minced meat from beef was inoculated with known levels of a labeled Stx phage prior to storage. Phage filtrates were used for plaque assays and DNA extraction, followed by real-time PCR and digital droplet PCR (ddPCR). The results from the pilot study suggested that the initial DNA extraction protocol was not optimal, and several modifications were tested before a final protocol was defined. The final DNA extraction protocol comprised ultra-centrifugation of the entire phage filtrate for concentrating phages and two times phenol–chloroform extraction. The protocol was used for two spiking experiments. The DNA extraction protocol resulted in flexibility in the amount of DNA available for use in PCR analyses, ultimately increasing the sensitivity of the method used for quantification of phages in a sample. All three quantification methods employed (i.e., plaque assays, real-time PCR, and ddPCR) showed similar trends in the development of the phages during storage, where ddPCR has the benefit of giving absolute quantification of DNA copies in a simple experimental setup. The results indicate that the Stx phages persist and remain infective for at least 20 days under the storage conditions used in the present study. Stx phages in foods might represent a potential risk for humans. Although it can be speculated that transduction may take place at 8°C with subsequent forming of STEC, it can be expected to be a rare event. However, such an event may possibly take place under more optimal conditions, such as an increase in storage temperature of foods or in the gastrointestinal tract of humans.
Collapse
Affiliation(s)
- B Spilsberg
- Section for Molecular Biology, Norwegian Veterinary Institute, Oslo, Norway
| | - C Sekse
- Section for Molecular Biology, Norwegian Veterinary Institute, Oslo, Norway
| | - Anne M Urdahl
- Section for Food Safety and Animal Health Research, Norwegian Veterinary Institute, Oslo, Norway
| | - Live L Nesse
- Section for Food Safety and Animal Health Research, Norwegian Veterinary Institute, Oslo, Norway
| | - Gro S Johannessen
- Section for Food Safety and Animal Health Research, Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
12
|
Macori G, McCarthy SC, Burgess CM, Fanning S, Duffy G. Investigation of the Causes of Shigatoxigenic Escherichia coli PCR Positive and Culture Negative Samples. Microorganisms 2020; 8:microorganisms8040587. [PMID: 32325659 PMCID: PMC7232186 DOI: 10.3390/microorganisms8040587] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular methods may reveal the presence of pathogens in samples through the detection of specific target gene(s) associated with microorganisms, but often, the subsequent cultural isolation of the pathogen is not possible. This discrepancy may be related to low concentration of the cells, presence of dead cells, competitive microflora, injured cells and cells in a viable but non-culturable state, free DNA and the presence of free bacteriophages which can carry the target gene causing the PCR-positive/culture-negative results. Shiga-toxigenic Escherichia coli (STEC) was used as a model for studying this phenomenon, based on the phage-encoded cytotoxins genes (Stx family) as the detection target in samples through real-time qPCR. Stx phages can be integrated in the STEC chromosome or can be isolated as free particles in the environment. In this study, a combination of PCR with culturing was used for investigating the presence of the stx1 and stx2 genes in 155 ovine recto-anal junction swab samples (method (a)-PCR). Samples which were PCR-positive and culture-negative were subjected to additional analyses including detection of dead STEC cells (method (b)-PCR-PMA dye assay), presence of Stx phages (method (c)-plaque assays) and inducible integrated phages (method (d)-phage induction). Method (a) showed that even though 121 samples gave a PCR-positive result (78%), only 68 samples yielded a culturable isolate (43.9%). Among the 53 (34.2%) PCR-positive/culture-negative samples, 21 (39.6%) samples were shown to have STEC dead cells only, eight (15.1%) had a combination of dead cells and inducible stx phage, while two samples (3.8%) had a combination of dead cells, inducible phage and free stx phage, and a further two samples had Stx1 free phages only (3.8%). It was thus possible to reduce the samples with no explanation to 20 (37.7% of 53 samples), representing a further step towards an improved understanding of the STEC PCR-positive/culture-negative phenomenon.
Collapse
Affiliation(s)
- Guerrino Macori
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; (S.C.M.); (G.D.)
- Correspondence: (G.M.); (C.M.B.)
| | - Siobhán C. McCarthy
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; (S.C.M.); (G.D.)
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland;
| | - Catherine M. Burgess
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; (S.C.M.); (G.D.)
- Correspondence: (G.M.); (C.M.B.)
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland;
| | - Geraldine Duffy
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; (S.C.M.); (G.D.)
| |
Collapse
|
13
|
Onyeka LO, Adesiyun AA, Keddy KH, Madoroba E, Manqele A, Thompson PN. Shiga Toxin-Producing Escherichia coli Contamination of Raw Beef and Beef-Based Ready-to-Eat Products at Retail Outlets in Pretoria, South Africa. J Food Prot 2020; 83:476-484. [PMID: 32065651 DOI: 10.4315/0362-028x.jfp-19-372] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/26/2019] [Indexed: 01/12/2023]
Abstract
ABSTRACT A cross-sectional study was conducted to determine the prevalence of and factors associated with Shiga toxin-producing Escherichia coli (STEC) in raw beef and ready-to-eat (RTE) beef products sold in 31 retail outlets in Pretoria, South Africa, and nearby areas. A total of 463 beef and RTE samples were screened for four STEC virulence genes (stx1, stx2, eaeA, and hlyA) and seven O-serogroups (O113, O157, O26, O91, O145, O111, and O103) with a multiplex PCR assay. The total aerobic plate count (TAPC) per gram was also determined. A total of 38 STEC isolates were recovered and characterized by conventional PCR assay and serotyping. The overall prevalence of STEC in the beef and RTE samples tested was 16.4% (76 of 463 samples; 95% confidence interval, 13 to 20%). The prevalence of STEC differed significantly by product type (P < 0.0001), with the highest prevalence (35%) detected in boerewors (spicy sausage). The STEC prevalences in minced beef, brisket, RTE cold beef, and biltong were 18, 13, 9, and 5%, respectively. The most frequently detected stx gene was stx2 (13%), and STEC serogroups from recovered isolates were detected at the following prevalences: O2, 15%; O8, 12%; O13, 15%; O20, 8%; O24, 3%; O39, 3%; O41, 8%; O71, 3%; O76, 3%; O150, 12%; and O174, 3%. A high proportion (77%) of the samples had TAPCs that exceeded the South African microbiological standards for meat export (5.0 log CFU/g). The prevalence of O157 STEC (16%) and the diversity of non-O157 STEC serogroups found in five common beef-based products from retail outlets in South Africa suggest exposure of raw beef and beef products to multiple contamination sources during carcass processing and/or cutting and handling at retail outlets. These data provide direct estimates of the potential health risk to consumers from undercooked contaminated products and indicate the need to improve sanitary practices during slaughter and processing of beef and beef-based RTE products. A risk-based surveillance system for STEC may be needed. HIGHLIGHTS
Collapse
Affiliation(s)
- Libby O Onyeka
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa (ORCID: https://orcid.org/0000-0001-9470-9421 [A.A.A.]; https://orcid.org/0000-0002-2268-9748 [P.N.T.]).,Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
| | - Abiodun A Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa (ORCID: https://orcid.org/0000-0001-9470-9421 [A.A.A.]; https://orcid.org/0000-0002-2268-9748 [P.N.T.])
| | - Karen H Keddy
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Evelyn Madoroba
- Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa (ORCID: https://orcid.org/0000-0002-5400-343X [E.M.]).,Department of Biochemistry & Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, KwaZulu-Natal, South Africa
| | - Ayanda Manqele
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa (ORCID: https://orcid.org/0000-0001-9470-9421 [A.A.A.]; https://orcid.org/0000-0002-2268-9748 [P.N.T.]).,Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa (ORCID: https://orcid.org/0000-0002-5400-343X [E.M.])
| | - Peter N Thompson
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa (ORCID: https://orcid.org/0000-0001-9470-9421 [A.A.A.]; https://orcid.org/0000-0002-2268-9748 [P.N.T.])
| |
Collapse
|
14
|
Liao YT, Sun X, Quintela IA, Bridges DF, Liu F, Zhang Y, Salvador A, Wu VCH. Discovery of Shiga Toxin-Producing Escherichia coli (STEC)-Specific Bacteriophages From Non-fecal Composts Using Genomic Characterization. Front Microbiol 2019; 10:627. [PMID: 31001216 PMCID: PMC6454146 DOI: 10.3389/fmicb.2019.00627] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/12/2019] [Indexed: 12/29/2022] Open
Abstract
Composting is a complex biodegradable process that converts organic materials into nutrients to facilitate crop yields, and, if well managed, can render bactericidal effects. Majority of research focused on detection of enteric pathogens, such as Shiga toxin-producing Escherichia coli (STEC) in fecal composts. Recently, attention has been emphasized on bacteriophages, such as STEC-specific bacteriophages, associated with STEC from the fecal-contaminated environment because they are able to sustain adverse environmental condition during composting process. However, little is known regarding the isolation of STEC-specific bacteriophages in non-fecal composts. Thus, the objectives were to isolate and genomically characterize STEC-specific bacteriophages, and to evaluate its association with STEC in non-fecal composts. For bacteriophage isolation, the samples were enriched with non-pathogenic E. coli (3 strains) and STEC (14 strains), respectively. After purification, host range, plaque size, and phage morphology were examined. Furthermore, bacteriophage genomes were subjected to whole-genome sequencing using Illumina MiSeq and genomic analyses. Isolation of top six non-O157 and O157 STEC utilizing culture methods combined with PCR-based confirmation was also conducted. The results showed that various STEC-specific bacteriophages, including vB_EcoM-Ro111lw, vB_EcoM-Ro121lw, vB_EcoS-Ro145lw, and vB_EcoM-Ro157lw, with different but complementary host ranges were isolated. Genomic analysis showed the genome sizes varied from 42kb to 149kb, and most bacteriophages were unclassified at the genus level, except vB_EcoM-Ro111lw as FelixO1-like viruses. Prokka predicted less than 25% of the ORFs coded for known functions, including those essential for DNA replication, bacteriophage structure, and host cell lysis. Moreover, none of the bacteriophages harbored lysogenic genes or virulence genes, such as stx or eae. Additionally, the presence of these lytic bacteriophages was likely attributed to zero isolation of STEC and could also contribute to additional antimicrobial effects in composts, if the composting process was insufficient. Current findings indicate that various STEC-specific bacteriophages were found in the non-fecal composts. In addition, the genomic characterization provides in-depth information to complement the deficiency of biological features regarding lytic cycle of the new bacteriophages. Most importantly, these bacteriophages have great potential to control various serogroups of STEC.
Collapse
Affiliation(s)
- Yen-Te Liao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Xincheng Sun
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| | - Irwin A. Quintela
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - David F. Bridges
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Fang Liu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yujie Zhang
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| |
Collapse
|
15
|
Jenssen GR, Veneti L, Lange H, Vold L, Naseer U, Brandal LT. Implementation of multiplex PCR diagnostics for gastrointestinal pathogens linked to increase of notified Shiga toxin-producing Escherichia coli cases in Norway, 2007-2017. Eur J Clin Microbiol Infect Dis 2019; 38:801-809. [PMID: 30680573 PMCID: PMC6424946 DOI: 10.1007/s10096-019-03475-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022]
Abstract
The aim of this study was to investigate implementation of multiplex PCR assays (broad screening PCR) on the distribution and characteristics of notified Shiga toxin-producing Escherichia coli (STEC) cases in Norway, 2007-2017. We described STEC cases notified to the Norwegian Surveillance System for Communicable Diseases (MSIS), 2007-2017 and categorised cases as high-virulent, low-virulent or unclassifiable STEC infections based on guidelines for follow-up of STEC cases. We conducted descriptive analysis and time series analysis allowing for trends and seasonality, and calculated adjusted incidence rate ratios (aIRR) using negative binomial regression for laboratories with and without broad screening PCR. A total of 1458 STEC cases were notified to MSIS (2007-2017), median age 21 years, 51% female. Cases were categorised as having 475 (33%) high-virulent, 652 (45%) low-virulent, and 331 (23%) unclassifiable STEC infections. We observed a higher increasing monthly trend in cases (aIRR = 1.020; 95% CI 1.016-1.024) notified from laboratories with broad screening PCR (n = 4) compared to laboratories (n = 17) without (aIRR = 1.011; 95% CI 1.007-1.014). Notification of low-virulent STEC infections increased from laboratories with broad screening PCR. The increase in notified STEC cases was prominent in cases categorised with a low-virulent STEC infection and largely attributable to unselective screening methods. We recommend NIPH to maintain differentiated control measures for STEC cases to avoid follow-up of low-virulent STEC infections. We recommend microbiological laboratories in Norway to consider a more cost-effective broad screening PCR strategy that enables differentiation of high-virulent STEC infections.
Collapse
Affiliation(s)
- Gaute Reier Jenssen
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
- Oslo University Hospital, Oslo, Norway.
| | - Lamprini Veneti
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway
| | - Heidi Lange
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway
| | - Line Vold
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway
| | - Umaer Naseer
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway
| | - Lin T Brandal
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway
| |
Collapse
|
16
|
Longitudinal Study of Shiga Toxin-Producing Escherichia coli and Campylobacter jejuni on Finnish Dairy Farms and in Raw Milk. Appl Environ Microbiol 2019; 85:AEM.02910-18. [PMID: 30709824 PMCID: PMC6585499 DOI: 10.1128/aem.02910-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/28/2019] [Indexed: 01/12/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) and Campylobacter jejuni are notable health hazards associated with the consumption of raw milk. These bacteria may colonize the intestines of asymptomatic cattle and enter bulk tank milk via fecal contamination during milking. We studied the frequency of STEC O157:H7 and C. jejuni contamination in tank milk (n = 785) and the in-line milk filters of milking machines (n = 631) versus the frequency of isolation from cattle feces (n = 257) on three Finnish dairy farms for 1 year. Despite simultaneous isolation of STEC O157:H7 (17%) or C. jejuni (53%) from cattle, these bacteria were rarely isolated from milk filters (2% or <1%, respectively) and milk (0%). As revealed by phylogenomics, one STEC O157:H7 strain at a time was detected on each farm and persisted for ≤12 months despite rigorous hygienic measures. C. jejuni strains of a generalist sequence type (ST-883 and ST-1080) persisted in the herds for ≥11 months, and several other C. jejuni types were detected sporadically. The stx gene carried by STEC was detected more frequently from milk filters (37%) than from milk (7%), suggesting that milk filters are more suitable sampling targets for monitoring than milk. A questionnaire of on-farm practices suggested lower stx contamination of milk when major cleansing in the barn, culling, or pasturing of dairy cows was applied, while a higher average outdoor temperature was associated with higher stx contamination. Because pathogen contamination occurred despite good hygiene and because pathogen detection from milk and milk filters proved challenging, we recommend heat treatment for raw milk before consumption.IMPORTANCE The increased popularity of raw milk consumption has created demand for relaxing legislation, despite the risk of contamination by pathogenic bacteria, notably STEC and C. jejuni However, the epidemiology of these milk-borne pathogens on the herd level is still poorly understood, and data are lacking on the frequency of milk contamination on farms with cattle shedding these bacteria in their feces. This study suggests (i) that STEC contamination in milk can be reduced, but not prevented, by on-farm hygienic measures while fecal shedding is observable, (ii) that milk filters are more suitable sampling targets for monitoring than milk although pathogen detection from both sample matrices may be challenging, and (iii) that STEC and C. jejuni genotypes may persist in cattle herds for several months. The results can be utilized in developing and targeting pathogen monitoring and risk management on the farm level and contributed to the revision of Finnish legislation in 2017.
Collapse
|
17
|
Liao YT, Quintela IA, Nguyen K, Salvador A, Cooley MB, Wu VCH. Investigation of prevalence of free Shiga toxin-producing Escherichia coli (STEC)-specific bacteriophages and its correlation with STEC bacterial hosts in a produce-growing area in Salinas, California. PLoS One 2018; 13:e0190534. [PMID: 29300761 PMCID: PMC5754052 DOI: 10.1371/journal.pone.0190534] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/11/2017] [Indexed: 01/20/2023] Open
Abstract
Shiga toxin-producing E. coli (STEC) causes approximately 265,000 illnesses and 3,600 hospitalizations annually and is highly associated with animal contamination due to the natural reservoir of ruminant gastrointestinal tracts. Free STEC-specific bacteriophages against STEC strains are also commonly isolated from fecal-contaminated environment. Previous studies have evaluated the correlation between the prevalence of STEC-specific bacteriophages and STEC strains to improve animal-associated environment. However, the similar information regarding free STEC-specific bacteriophages prevalence in produce growing area is lacking. Thus, the objectives of this research were to determine the prevalence of STEC-specific phages, analyze potential effects of environmental factors on the prevalence of the phages, and study correlations between STEC-specific bacteriophages and the bacterial hosts in pre-harvest produce environment. Surface water from 20 samples sites was subjected to free bacteriophage isolation using host strains of both generic E. coli and STEC (O157, six non-O157 and one O179 strains) cocktails, and isolation of O157 and non-O157 STEC strains by use of culture methods combined with PCR-based confirmation. The weather data were obtained from weather station website. Free O145- and O179-specific bacteriophages were the two most frequently isolated bacteriophages among all (O45, O145, O157 and O179) in this study. The results showed June and July had relatively high prevalence of overall STEC-specific bacteriophages with minimum isolation of STEC strains. In addition, the bacteriophages were likely isolated in the area—around or within city—with predominant human impact, whereas the STEC bacterial isolates were commonly found in agriculture impact environment. Furthermore, there was a trend that the sample sites with positive of free STEC bacteriophage did not have the specific STEC bacterial hosts. The findings of the study enable us to understand the ecology between free STEC-specific phages and STEC bacteria for further pre-harvest food safety management in produce environment.
Collapse
Affiliation(s)
- Yen-Te Liao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Irwin A Quintela
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America.,School of Food and Agriculture, University of Maine, Orono, Maine, United States of America
| | - Kimberly Nguyen
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Michael B Cooley
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| |
Collapse
|
18
|
Li B, Liu H, Wang W. Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E. coli. BMC Microbiol 2017; 17:215. [PMID: 29121863 PMCID: PMC5679507 DOI: 10.1186/s12866-017-1123-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/27/2017] [Indexed: 12/22/2022] Open
Abstract
Background Shiga toxin-producing Escherichia coli (STEC), including E. coli O157:H7, are responsible for numerous foodborne outbreaks annually worldwide. E. coli O157:H7, as well as pathogenic non-O157:H7 STECs, can cause life-threating complications, such as bloody diarrhea (hemolytic colitis) and hemolytic-uremic syndrome (HUS). Previously, we developed a real-time PCR assay to detect E. coli O157:H7 in foods by targeting a unique putative fimbriae protein Z3276. To extend the detection spectrum of the assay, we report a multiplex real-time PCR assay to specifically detect E. coli O157:H7 and screen for non-O157 STEC by targeting Z3276 and Shiga toxin genes (stx1 and stx2). Also, an internal amplification control (IAC) was incorporated into the assay to monitor the amplification efficiency. Methods The multiplex real-time PCR assay was developed using the Life Technology ABI 7500 System platform and the standard chemistry. The optimal amplification mixture of the assay contains 12.5 μl of 2 × Universal Master Mix (Life Technology), 200 nM forward and reverse primers, appropriate concentrations of four probes [(Z3276 (80 nM), stx1 (80 nM), stx2 (20 nM), and IAC (40 nM)], 2 μl of template DNA, and water (to make up to 25 μl in total volume). The amplification conditions of the assay were set as follows: activation of TaqMan at 95 °C for 10 min, then 40 cycles of denaturation at 95 °C for 10 s and annealing/extension at 60 °C for 60 s. Results The multiplex assay was optimized for amplification conditions. The limit of detection (LOD) for the multiplex assay was determined to be 200 fg of bacterial DNA, which is equivalent to 40 CFU per reaction which is similar to the LOD generated in single targeted PCRs. Inclusivity and exclusivity determinants were performed with 196 bacterial strains. All E. coli O157:H7 (n = 135) were detected as positive and all STEC strains (n = 33) were positive for stx1, or stx2, or stx1 and stx2 (Table 1). No cross reactivity was detected with Salmonella enterica, Shigella strains, or any other pathogenic strains tested. Conclusions A multiplex real-time PCR assay that can rapidly and simultaneously detect E. coli O157:H7 and screen for non-O157 STEC strains has been developed and assessed for efficacy. The inclusivity and exclusivity tests demonstrated high sensitivity and specificity of the multiplex real-time PCR assay. In addition, this multiplex assay was shown to be effective for the detection of E. coli O157:H7 from two common food matrices, beef and spinach, and may be applied for detection of E. coli O157:H7 and screening for non-O157 STEC strains from other food matrices as well.
Collapse
Affiliation(s)
- Baoguang Li
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, 20708, USA.
| | - Huanli Liu
- Branch of Microbiology, Office of Regulatory Affairs, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Weimin Wang
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, 20708, USA
| |
Collapse
|
19
|
Contribution of cropland to the spread of Shiga toxin phages and the emergence of new Shiga toxin-producing strains. Sci Rep 2017; 7:7796. [PMID: 28798380 PMCID: PMC5552810 DOI: 10.1038/s41598-017-08169-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/07/2017] [Indexed: 11/09/2022] Open
Abstract
A growing interest in healthy eating has lead to an increase in the consumption of vegetables, associated with a rising number of bacterial outbreaks related to fresh produce. This is the case of the outbreak in Germany, caused by a O104:H4 enteroaggregative E. coli strain lysogenic for a Stx phage. Temperate Stx phages released from their hosts occur as free particles in various environments. This study reports the occurrence of Stx phages in vegetables (lettuce, cucumber, and spinach) and cropland soil samples. Infectious Stx2 phages were found in all samples and many carried also Stx1 phages. Their persistence in vegetables, including germinated sprouts, of Stx phage 933 W and an E. coli C600 (933 W∆stx::gfp-cat) lysogen used as surrogate, showed reductions below 2 log10 units of both microorganisms at 23 °C and 4 °C over 10 days. Higher reductions (up to 3.9 log10) units were observed in cropland soils at both temperatures. Transduction of a recombinant 933 W∆stx::kan phage was observed in all matrices. Protecting against microbial contamination of vegetables is imperative to ensure a safe food chain. Since the emergence of new Stx strains by Stx phage transduction is possible in vegetable matrices, methods aimed at reducing microbial risks in vegetables should not neglect phages.
Collapse
|
20
|
Abstract
Bacteriophages, viruses that infect bacteria, have re-emerged as powerful regulators of bacterial populations in natural ecosystems. Phages invade the human body, just as they do other natural environments, to such an extent that they are the most numerous group in the human virome. This was only revealed in recent metagenomic studies, despite the fact that the presence of phages in the human body was reported decades ago. The influence of the presence of phages in humans has yet to be evaluated; but as in marine environments, a clear role in the regulation of bacterial populations could be envisaged, that might have an impact on human health. Moreover, phages are excellent vehicles of genetic transfer, and they contribute to the evolution of bacterial cells in the human body by spreading and acquiring DNA horizontally. The abundance of phages in the human body does not pass unnoticed and the immune system reacts to them, although it is not clear to what extent. Finally, the presence of phages in human samples, which most of the time is not considered, can influence and bias microbiological and molecular results; and, in view of the evidences, some studies suggest that more attention needs to be paid to their interference.
Collapse
Affiliation(s)
- Ferran Navarro
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant PauBarcelona, Spain
| | - Maite Muniesa
- Department of Microbiology, University of BarcelonaBarcelona, Spain
| |
Collapse
|
21
|
Conrad CC, Stanford K, McAllister TA, Thomas J, Reuter T. Competition during enrichment of pathogenicEscherichia colimay result in culture bias. Facets (Ott) 2017. [DOI: 10.1139/facets-2016-0007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deadly outbreaks and illnesses due to Shiga toxin-producing Escherichia coli (STEC) occur worldwide; however, the cultivation methods required for adequate monitoring and traceback investigations are inefficient at best. Detection of STEC relies heavily on enrichment; yet no standard media or protocols exist. Furthermore, whether enrichment may bias detection of multiple STEC serogroups from complex samples is unknown. Thus, 14 STEC strains of serogroups O157 and the top six non-O157s (O26, O45, O103, O111, O121, and O145) were enriched in pairs for 6–78 h in broth and evaluated by quantitative polymerase chain reaction (qPCR). Here we show that a conventional 6-h enrichment protocol did not result in intra-species culture bias for the isolates tested. However, subsequent enrichments often produced biased cultures, with differences in the qPCR gene copy number ≥2 log10apparent in 12%, 38%, and 52% of competitions after 30, 54, and 78 h of consecutive enrichments, respectively. Some strains were able to prevail and (or) out-compete the opponent strain in 100% of competitions. Our results suggest that culture bias should be considered and (or) evaluated further due to the potential implications during routine pathogen screening and outbreak investigations.
Collapse
Affiliation(s)
- Cheyenne C. Conrad
- University of Lethbridge, Biological Sciences Department, Lethbridge, AB T1K 3M4, Canada
- Alberta Agriculture and Forestry, Lethbridge Research Centre, Lethbridge, AB T1J 4V6, Canada
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB T1J 4B1, Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge Research Centre, Lethbridge, AB T1J 4V6, Canada
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB T1J 4B1, Canada
| | - James Thomas
- University of Lethbridge, Biological Sciences Department, Lethbridge, AB T1K 3M4, Canada
| | - Tim Reuter
- Alberta Agriculture and Forestry, Lethbridge Research Centre, Lethbridge, AB T1J 4V6, Canada
| |
Collapse
|
22
|
Wu SY, Park GY, Kim SH, Hulme J, An SSA. Diminazene aceturate: an antibacterial agent for Shiga-toxin-producing Escherichia coli O157:H7. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3363-3378. [PMID: 27789937 PMCID: PMC5072558 DOI: 10.2147/dddt.s114832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aim of this study was to investigate the bacteriostatic and bactericidal effects of diminazene aceturate (DA) against five strains of pathogenic bacteria and two strains of nonpathogenic bacteria. The results showed that 5 μg/mL of DA suppressed the growth of pathogenic Escherichia coli by as much as 77% compared with the controls. Enterohemorrhagic E. coli EDL933 (an E. coli O157:H7 strain) was the most sensitive to DA with a minimum inhibitory concentration of 20 μg/mL. Additional investigations showed that DA induced the highest level of intracellular reactive oxygen species in EDL933. A positive correlation between the reactive oxygen species levels and DA concentration was demonstrated. DA (5 μg/mL) was also a potent uncoupler, inducing a stationary phase collapse (70%–75%) in both strains of E. coli O157:H7. Further investigation showed that the collapse was due to the NaCl:DA ratio in the broth and was potassium ion dependent. A protease screening assay was conducted to elucidate the underlying mechanism. It was found that at neutral pH, the hydrolysis of H-Asp-pNA increased by a factor of 2–3 in the presence of DA, implying that DA causes dysregulation of the proton motive force and a decrease in cellular pH. Finally, a commercial verotoxin test showed that DA did not significantly increase toxin production in EDL933 and was a suitable antibacterial agent for Shiga-toxin-producing E. coli.
Collapse
Affiliation(s)
- Si-Ying Wu
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam-si
| | - Gil-Yong Park
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam-si
| | - So-Hee Kim
- Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - John Hulme
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam-si
| | - Seong Soo A An
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam-si
| |
Collapse
|
23
|
Brown-Jaque M, Muniesa M, Navarro F. Bacteriophages in clinical samples can interfere with microbiological diagnostic tools. Sci Rep 2016; 6:33000. [PMID: 27609086 PMCID: PMC5016790 DOI: 10.1038/srep33000] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/18/2016] [Indexed: 01/15/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria, and they are found everywhere their bacterial hosts are present, including the human body. To explore the presence of phages in clinical samples, we assessed 65 clinical samples (blood, ascitic fluid, urine, cerebrospinal fluid, and serum). Infectious tailed phages were detected in >45% of ascitic fluid and urine samples. Three examples of phage interference with bacterial isolation were observed. Phages prevented the confluent bacterial growth required for an antibiogram assay when the inoculum was taken from an agar plate containing lysis plaques, but not when taken from a single colony in a phage-free area. In addition, bacteria were isolated directly from ascitic fluid, but not after liquid enrichment culture of the same samples, since phage propagation lysed the bacteria. Lastly, Gram-negative bacilli observed in a urine sample did not grow on agar plates due to the high densities of infectious phages in the sample.
Collapse
Affiliation(s)
- Maryury Brown-Jaque
- Department of Microbiology, University of Barcelona, Diagonal 645, Annex, Floor 0, 08028 Barcelona, Spain
| | - Maite Muniesa
- Department of Microbiology, University of Barcelona, Diagonal 645, Annex, Floor 0, 08028 Barcelona, Spain
| | - Ferran Navarro
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Sant Quintí 89, 08041 Barcelona, Spain
| |
Collapse
|
24
|
Carter CC, Fierer J, Chiu WW, Looney DJ, Strain M, Mehta SR. A Novel Shiga Toxin 1a-Converting Bacteriophage of Shigella sonnei With Close Relationship to Shiga Toxin 2-Converting Pages of Escherichia coli. Open Forum Infect Dis 2016; 3:ofw079. [PMID: 27419156 PMCID: PMC4943565 DOI: 10.1093/ofid/ofw079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/15/2016] [Indexed: 11/22/2022] Open
Abstract
In recent studies, strains of non-dysenteriae 1 Shigella (NDS) expressing Shiga toxin have been reported. In this study, we report a novel stx1a-converting bacteriophage of Shigella sonnei associated with travel to Mexico. Phylogenetic comparison between this and other stx-converting phages suggests that toxigenic NDS strains have arisen through separate horizontal transfer events from toxigenic Escherichia coli.
Collapse
Affiliation(s)
- Christoph C Carter
- University of California San Diego; Veterans Affairs Medical Center, San Diego, California
| | - Joshua Fierer
- University of California San Diego; Veterans Affairs Medical Center, San Diego, California
| | - Wei Wei Chiu
- University of California San Diego; Veterans Affairs Medical Center, San Diego, California
| | - David J Looney
- University of California San Diego; Veterans Affairs Medical Center, San Diego, California
| | - Matthew Strain
- University of California San Diego; Veterans Affairs Medical Center, San Diego, California
| | - Sanjay R Mehta
- University of California San Diego; Veterans Affairs Medical Center, San Diego, California
| |
Collapse
|
25
|
An Environmental Shiga Toxin-Producing Escherichia coli O145 Clonal Population Exhibits High-Level Phenotypic Variation That Includes Virulence Traits. Appl Environ Microbiol 2015; 82:1090-1101. [PMID: 26637597 DOI: 10.1128/aem.03172-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/24/2015] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) serotype O145 is one of the major non-O157 serotypes associated with severe human disease. Here we examined the genetic diversity, population structure, virulence potential, and antimicrobial resistance profiles of environmental O145 strains recovered from a major produce production region in California. Multilocus sequence typing analyses revealed that sequence type 78 (ST-78), a common ST in clinical strains, was the predominant genotype among the environmental strains. Similarly, all California environmental strains belonged to H28, a common H serotype in clinical strains. Although most environmental strains carried an intact fliC gene, only one strain retained swimming motility. Diverse stx subtypes were identified, including stx1a, stx2a, stx2c, and stx2e. Although no correlation was detected between the stx genotype and Stx1 production, high Stx2 production was detected mainly in strains carrying stx2a only and was correlated positively with the cytotoxicity of Shiga toxin. All environmental strains were capable of producing enterohemolysin, whereas only 10 strains were positive for anaerobic hemolytic activity. Multidrug resistance appeared to be common, as nearly half of the tested O145 strains displayed resistance to at least two different classes of antibiotics. The core virulence determinants of enterohemorrhagic E. coli were conserved in the environmental STEC O145 strains; however, there was large variation in the expression of virulence traits among the strains that were highly related genotypically, implying a trend of clonal divergence. Several cattle isolates exhibited key virulence traits comparable to those of the STEC O145 outbreak strains, emphasizing the emergence of hypervirulent strains in agricultural environments.
Collapse
|
26
|
Yan X, Fratamico PM, Bono JL, Baranzoni GM, Chen CY. Genome sequencing and comparative genomics provides insights on the evolutionary dynamics and pathogenic potential of different H-serotypes of Shiga toxin-producing Escherichia coli O104. BMC Microbiol 2015; 15:83. [PMID: 25887577 PMCID: PMC4393859 DOI: 10.1186/s12866-015-0413-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/12/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Various H-serotypes of the Shiga toxin-producing Escherichia coli (STEC) O104, including H4, H7, H21, and H¯, have been associated with sporadic cases of illness and have caused food-borne outbreaks globally. In the U.S., STEC O104:H21 caused an outbreak associated with milk in 1994. However, there is little known on the evolutionary origins of STEC O104 strains, and how genotypic diversity contributes to pathogenic potential of various O104 H-antigen serotypes isolated from different ecological niches and/or geographical regions. RESULTS Two STEC O104:H21 (milk outbreak strain) and O104:H7 (cattle isolate) strains were shot-gun sequenced, and the genomes were closed. The intimin (eae) gene, involved in the attaching-effacing phenotype of diarrheagenic E. coli, was not found in either strain. Examining various O104 genome sequences, we found that two "complete" left and right end portions of the locus of enterocyte effacement (LEE) pathogenicity island were present in 13 O104 strains; however, the central portion of LEE was missing, where the eae gene is located. In O104:H4 strains, the missing central portion of the LEE locus was replaced by a pathogenicity island carrying the aidA (adhesin involved in diffuse adherence) gene and antibiotic resistance genes commonly carried on plasmids. Enteroaggregative E. coli-specific virulence genes and European outbreak O104:H4-specific stx2-encoding Escherichia P13374 or Escherichia TL-2011c bacteriophages were missing in some of the O104:H4 genome sequences available from public databases. Most of the genomic variations in the strains examined were due to the presence of different mobile genetic elements, including prophages and genomic island regions. The presence of plasmids carrying virulence-associated genes may play a role in the pathogenic potential of O104 strains. CONCLUSIONS The two strains sequenced in this study (O104:H21 and O104:H7) are genetically more similar to each other than to the O104:H4 strains that caused an outbreak in Germany in 2011 and strains found in Central Africa. A hypothesis on strain evolution and pathogenic potential of various H-serotypes of E. coli O104 strains is proposed.
Collapse
Affiliation(s)
- Xianghe Yan
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, 19038, Wyndmoor, PA, USA.
- U.S. Department of Agriculture, Eastern Regional Research Center, Agricultural Research Service, 600 East Mermaid Lane, 19038, Wyndmoor, PA, USA.
| | - Pina M Fratamico
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, 19038, Wyndmoor, PA, USA.
| | - James L Bono
- USDA, Agricultural Research Service, Meat Animal Research Center, Clay Center, NE, 68933, USA.
| | - Gian Marco Baranzoni
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, 19038, Wyndmoor, PA, USA.
| | - Chin-Yi Chen
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, 19038, Wyndmoor, PA, USA.
| |
Collapse
|
27
|
Improving detection of Shiga toxin-producing Escherichia coli by molecular methods by reducing the interference of free Shiga toxin-encoding bacteriophages. Appl Environ Microbiol 2014; 81:415-21. [PMID: 25362055 DOI: 10.1128/aem.02941-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Detection of Shiga toxin-producing Escherichia coli (STEC) by culture methods is advisable to identify the pathogen, but recovery of the strain responsible for the disease is not always possible. The use of DNA-based methods (PCR, quantitative PCR [qPCR], or genomics) targeting virulence genes offers fast and robust alternatives. However, detection of stx is not always indicative of STEC because stx can be located in the genome of temperate phages found in the samples as free particles; this could explain the numerous reports of positive stx detection without successful STEC isolation. An approach based on filtration through low-protein-binding membranes and additional washing steps was applied to reduce free Stx phages without reducing detection of STEC bacteria. River water, food, and stool samples were spiked with suspensions of phage 933W and, as a STEC surrogate, a lysogen harboring a recombinant Stx phage in which stx was replaced by gfp. Bacteria were tested either by culture or by qPCR for gfp while phages were tested using qPCR targeting stx in phage DNA. The procedure reduces phage particles by 3.3 log10 units without affecting the recovery of the STEC population (culturable or assessed by qPCR). The method is applicable regardless of phage and bacteria densities and is useful in different matrices (liquid or solid). This approach eliminates or considerably reduces the interference of Stx phages in the detection of STEC by molecular methods. The reduction of possible interference would increase the efficiency and reliability of genomics for STEC detection when the method is applied routinely in diagnosis and food analysis.
Collapse
|