1
|
Traore ES, Li J, Chiura T, Geng J, Sachla AJ, Yoshimoto F, Eichenbaum Z, Davis I, Mak PJ, Liu A. Heme Binding to HupZ with a C-Terminal Tag from Group A Streptococcus. Molecules 2021; 26:549. [PMID: 33494451 PMCID: PMC7865249 DOI: 10.3390/molecules26030549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/23/2022] Open
Abstract
HupZ is an expected heme degrading enzyme in the heme acquisition and utilization pathway in Group A Streptococcus. The isolated HupZ protein containing a C-terminal V5-His6 tag exhibits a weak heme degradation activity. Here, we revisited and characterized the HupZ-V5-His6 protein via biochemical, mutagenesis, protein quaternary structure, UV-vis, EPR, and resonance Raman spectroscopies. The results show that the ferric heme-protein complex did not display an expected ferric EPR signal and that heme binding to HupZ triggered the formation of higher oligomeric states. We found that heme binding to HupZ was an O2-dependent process. The single histidine residue in the HupZ sequence, His111, did not bind to the ferric heme, nor was it involved with the weak heme-degradation activity. Our results do not favor the heme oxygenase assignment because of the slow binding of heme and the newly discovered association of the weak heme degradation activity with the His6-tag. Altogether, the data suggest that the protein binds heme by its His6-tag, resulting in a heme-induced higher-order oligomeric structure and heme stacking. This work emphasizes the importance of considering exogenous tags when interpreting experimental observations during the study of heme utilization proteins.
Collapse
Affiliation(s)
- Ephrahime S. Traore
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
| | - Jiasong Li
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
| | - Tapiwa Chiura
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA;
| | - Jiafeng Geng
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA;
| | - Ankita J. Sachla
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; (A.J.S.); (Z.E.)
| | - Francis Yoshimoto
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; (A.J.S.); (Z.E.)
| | - Ian Davis
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA;
| | - Piotr J. Mak
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA;
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA;
| |
Collapse
|
2
|
Porsch EA, Yagupsky P, St. Geme JW. Kingella negevensis shares multiple putative virulence factors with Kingella kingae. PLoS One 2020; 15:e0241511. [PMID: 33125432 PMCID: PMC7598479 DOI: 10.1371/journal.pone.0241511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/15/2020] [Indexed: 12/02/2022] Open
Abstract
Kingella negevensis is a newly described gram-negative bacterium in the Neisseriaceae family and is closely related to Kingella kingae, an important cause of pediatric osteoarticular infections and other invasive diseases. Like K. kingae, K. negevensis can be isolated from the oropharynx of young children, although at a much lower rate. Due to the potential for misidentification as K. kingae, the burden of disease due to K. negevensis is currently unknown. Similarly, there is little known about virulence factors present in K. negevensis and how they compare to virulence factors in K. kingae. Using a variety of approaches, we show that K. negevensis produces many of the same putative virulence factors that are present in K. kingae, including a polysaccharide capsule, a secreted exopolysaccharide, a Knh-like trimeric autotransporter, and type IV pili, suggesting that K. negevensis may have significant pathogenic potential.
Collapse
Affiliation(s)
- Eric A. Porsch
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Pablo Yagupsky
- Clinical Microbiology Laboratory, Soroka University Medical Center, Beer-Sheva, Israel
| | - Joseph W. St. Geme
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perlman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
3
|
Lugo MR, Merrill AR. An In-Silico Sequence-Structure-Function Analysis of the N-Terminal Lobe in CT Group Bacterial ADP-Ribosyltransferase Toxins. Toxins (Basel) 2019; 11:toxins11060365. [PMID: 31234283 PMCID: PMC6628389 DOI: 10.3390/toxins11060365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 01/02/2023] Open
Abstract
The C3-like toxins are single-domain proteins that represent a minimal mono-ADP-ribosyl transferase (mART) enzyme with a simple model scaffold for the entire cholera toxin (CT)-group. These proteins possess a single (A-domain) that modifies Rho proteins. In contrast, C2-like toxins require a binding/translocation partner (B-component) for intoxication. These are A-only toxins that contain the E-x-E motif, modify G-actin, but are two-domains with a C-domain possessing enzymatic activity. The N-domain of the C2-like toxins is unstructured, and its function is currently unknown. A sequence-structure-function comparison was performed on the N-terminal region of the mART domain of the enzymatic component of the CT toxin group in the CATCH fold (3.90.210.10). Special consideration was given to the N-domain distal segment, the α-lobe (α1–α4), and its different roles in these toxin sub-groups. These results show that the role of the N-terminal α-lobe is to provide a suitable configuration (i) of the α2–α3 helices to feature the α3-motif that has a role in NAD+ substrate binding and possibly in the interaction with the protein target; (ii) the α3–α4 helices to provide the α3/4-loop with protein-protein interaction capability; and (iii) the α1-Ntail that features specialized motif(s) according to the toxin type (A-only or A-B toxins) exhibiting an effect on the catalytic activity via the ARTT-loop, with a role in the inter-domain stability, and with a function in the binding and/or translocation steps during the internalization process.
Collapse
Affiliation(s)
- Miguel R Lugo
- Department of Molecular and Cellular Biology, University of Guelph, Guelph N1G 2W1, Canada.
| | - A Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph N1G 2W1, Canada.
| |
Collapse
|
4
|
Beres SB, Olsen RJ, Ojeda Saavedra M, Ure R, Reynolds A, Lindsay DSJ, Smith AJ, Musser JM. Genome sequence analysis of emm89 Streptococcus pyogenes strains causing infections in Scotland, 2010-2016. J Med Microbiol 2017; 66:1765-1773. [PMID: 29099690 PMCID: PMC5845742 DOI: 10.1099/jmm.0.000622] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Strains of type emm89 Streptococcus pyogenes have recently increased in frequency as a cause of human infections in several countries in Europe and North America. This increase has been molecular epidemiologically linked with the emergence of a new genetically distinct clone, designated clade 3. We sought to extend our understanding of this epidemic behavior by the genetic characterization of type emm89 strains responsible in recent years for an increased frequency of infections in Scotland. Methodology We sequenced the genomes of a retrospective cohort of 122 emm89 strains recovered from patients with invasive and noninvasive infections throughout Scotland during 2010 to 2016. Results All but one of the 122 emm89 infection isolates are of the recently emerged epidemic clade 3 clonal lineage. The Scotland isolates are closely related to and not genetically distinct from recent emm89 strains from England, they constitute a single genetic population. Conclusions The clade 3 clone causes virtually all-contemporary emm89 infections in Scotland. These findings add Scotland to a growing list of countries of Europe and North America where, by whole genome sequencing, emm89 clade 3 strains have been demonstrated to be the cause of an ongoing epidemic of invasive infections and to be genetically related due to descent from a recent common progenitor.
Collapse
Affiliation(s)
- Stephen B Beres
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, and Houston Methodist Hospital, Houston, TX 77030, USA.,Departments of Pathology and Laboratory Medicine and Microbiology and Immunology, Weill Cornell Medical College, NY 10021, USA
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Roisin Ure
- Scottish Haemophilus Legionella Meningococcus Pneumococcus Reference Laboratory, New Lister Building, Glasgow, G31 2ER, Scotland, UK
| | - Arlene Reynolds
- Scottish Haemophilus Legionella Meningococcus Pneumococcus Reference Laboratory, New Lister Building, Glasgow, G31 2ER, Scotland, UK
| | - Diane S J Lindsay
- Scottish Haemophilus Legionella Meningococcus Pneumococcus Reference Laboratory, New Lister Building, Glasgow, G31 2ER, Scotland, UK
| | - Andrew J Smith
- Scottish Haemophilus Legionella Meningococcus Pneumococcus Reference Laboratory, New Lister Building, Glasgow, G31 2ER, Scotland, UK.,College of Medical, Veterinary and Life Sciences, Glasgow Dental Hospital and School, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, Scotland, UK
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, and Houston Methodist Hospital, Houston, TX 77030, USA.,Departments of Pathology and Laboratory Medicine and Microbiology and Immunology, Weill Cornell Medical College, NY 10021, USA
| |
Collapse
|
5
|
Rush JS, Edgar RJ, Deng P, Chen J, Zhu H, van Sorge NM, Morris AJ, Korotkov KV, Korotkova N. The molecular mechanism of N-acetylglucosamine side-chain attachment to the Lancefield group A carbohydrate in Streptococcus pyogenes. J Biol Chem 2017; 292:19441-19457. [PMID: 29021255 DOI: 10.1074/jbc.m117.815910] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/06/2017] [Indexed: 12/21/2022] Open
Abstract
In many Lactobacillales species (i.e. lactic acid bacteria), peptidoglycan is decorated by polyrhamnose polysaccharides that are critical for cell envelope integrity and cell shape and also represent key antigenic determinants. Despite the biological importance of these polysaccharides, their biosynthetic pathways have received limited attention. The important human pathogen, Streptococcus pyogenes, synthesizes a key antigenic surface polymer, the Lancefield group A carbohydrate (GAC). GAC is covalently attached to peptidoglycan and consists of a polyrhamnose polymer, with N-acetylglucosamine (GlcNAc) side chains, which is an essential virulence determinant. The molecular details of the mechanism of polyrhamnose modification with GlcNAc are currently unknown. In this report, using molecular genetics, analytical chemistry, and mass spectrometry analysis, we demonstrated that GAC biosynthesis requires two distinct undecaprenol-linked GlcNAc-lipid intermediates: GlcNAc-pyrophosphoryl-undecaprenol (GlcNAc-P-P-Und) produced by the GlcNAc-phosphate transferase GacO and GlcNAc-phosphate-undecaprenol (GlcNAc-P-Und) produced by the glycosyltransferase GacI. Further investigations revealed that the GAC polyrhamnose backbone is assembled on GlcNAc-P-P-Und. Our results also suggested that a GT-C glycosyltransferase, GacL, transfers GlcNAc from GlcNAc-P-Und to polyrhamnose. Moreover, GacJ, a small membrane-associated protein, formed a complex with GacI and significantly stimulated its catalytic activity. Of note, we observed that GacI homologs perform a similar function in Streptococcus agalactiae and Enterococcus faecalis In conclusion, the elucidation of GAC biosynthesis in S. pyogenes reported here enhances our understanding of how other Gram-positive bacteria produce essential components of their cell wall.
Collapse
Affiliation(s)
- Jeffrey S Rush
- From the Department of Molecular and Cellular Biochemistry and
| | - Rebecca J Edgar
- From the Department of Molecular and Cellular Biochemistry and
| | - Pan Deng
- Division of Cardiovascular Medicine and the Gill Heart Institute, University of Kentucky, Lexington, Kentucky 40536 and
| | - Jing Chen
- From the Department of Molecular and Cellular Biochemistry and
| | - Haining Zhu
- From the Department of Molecular and Cellular Biochemistry and
| | - Nina M van Sorge
- the Department of Medical Microbiology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Andrew J Morris
- Division of Cardiovascular Medicine and the Gill Heart Institute, University of Kentucky, Lexington, Kentucky 40536 and
| | | | | |
Collapse
|