1
|
Pongpom M, Khamto N, Sukantamala P, Kalawil T, Wangsanut T. Identification of Homeobox Transcription Factors in a Dimorphic Fungus Talaromyces marneffei and Protein-Protein Interaction Prediction of RfeB. J Fungi (Basel) 2024; 10:687. [PMID: 39452639 PMCID: PMC11508405 DOI: 10.3390/jof10100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Talaromyces marneffei is a thermally dimorphic fungus that can cause life-threatening systemic mycoses, particularly in immunocompromised individuals. Fungal homeobox transcription factors control various developmental processes, including the regulation of sexual reproduction, morphology, metabolism, and virulence. However, the function of homeobox proteins in T. marneffei has not been fully explored. Here, we searched the T. marneffei genome for the total homeobox transcription factors and predicted their biological relevance by performing gene expression analysis in different cell types, including conidia, mycelia, yeasts, and during phase transition. RfeB is selected for further computational analysis since (i) its transcripts were differentially expressed in different phases of T. marneffei, and (ii) this protein contains the highly conserved protein-protein interaction region (IR), which could be important for pathobiology and have therapeutic application. To assess the structure-function of the IR region, in silico alanine substitutions were performed at three-conserved IR residues (Asp276, Glu279, and Gln282) of RfeB, generating a triple RfeB mutated protein. Using 3D modeling and molecular dynamics simulations, we compared the protein complex formation of wild-type and mutated RfeB proteins with the putative partner candidate TmSwi5. Our results demonstrated that the mutated RfeB protein exhibited increased free binding energy, elevated protein compactness, and a reduced number of atomic contacts, suggesting disrupted protein stability and interaction. Notably, our model revealed that the IR residues primarily stabilized the RfeB binding sites located in the central region (CR). This computational approach for protein mutagenesis could provide a foundation for future experimental studies on the functional characterization of RfeB and other homeodomain-containing proteins in T. marneffei.
Collapse
Affiliation(s)
- Monsicha Pongpom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.)
| | - Nopawit Khamto
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Thitisuda Kalawil
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.)
| | - Tanaporn Wangsanut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.)
| |
Collapse
|
2
|
Berikashvili V, Khardziani T, Kobakhidze A, Kulp M, Kuhtinskaja M, Lukk T, Gargano ML, Venturella G, Kachlishvili E, Metreveli E, Elisashvili VI, Asatiani M. Antifungal Activity of Medicinal Mushrooms and Optimization of Submerged Culture Conditions for Schizophyllum commune (Agaricomycetes). Int J Med Mushrooms 2023; 25:1-21. [PMID: 37830193 DOI: 10.1615/intjmedmushrooms.2023049836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The main goal of the present study was the exploration of the antifungal properties of Agaricomycetes mushrooms. Among twenty-three tested mushrooms against A. niger, B. cinerea, F. oxysporum, and G. bidwellii, Schizophyllum commune demonstrated highest inhibition rates and showed 35.7%, 6.5%, 50.4%, and 66.0% of growth inhibition, respectively. To reveal culture conditions enhancing the antifungal potential of Sch. commune, several carbon (lignocellulosic substrates among them) and nitrogen sources and their optimal concentrations were investigated. Presence of 6% mandarin juice production waste (MJPW) and 6% of peptone in nutrient medium promoted antifungal activity of selected mushroom. It was determined that, extracts obtained in the presence of MJPW effectively inhibited the grow of pathogenic fungi. Moreover, the content of phenolic compounds in the extracts obtained from Sch. commune grown on MJPW was several times higher (0.87 ± 0.05 GAE/g to 2.38 ± 0.08 GAE/g) than the extracts obtained from the mushroom grown on the synthetic (glycerol contained) nutrient medium (0.21 ± 0.03 GAE/g to 0.88 ± 0.05 GAE/g). Flavonoid contents in the extracts from Sch. commune varied from 0.58 ± 0.03 to 27.2 ± 0.8 mg QE/g. Identification of phenolic compounds composition in water and ethanol extracts were provided by mass spectrometry analysis. Extracts demonstrate considerable free radical scavenging activities and the IC50 values were generally low for the extracts, ranging from 1.9 mg/ml to 6.7 mg/ml. All the samples displayed a positive correlation between their concentration (0.05-15.0 mg/ml) and DPPH radical scavenging activity. This investigation revealed that Sch. commune mushroom has great potential to be used as a source of antifungal and antioxidant substances.
Collapse
Affiliation(s)
- Violeta Berikashvili
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Tamar Khardziani
- Durmishidze Institute of Biochemistry and Biotechnology, Academy of Science of Georgia, 10 km Agmashenebeli kheivani, 0159 Tbilisi, Georgia; Institute of Microbial Biotechnology, Agricultural University of Georgia, Tbilisi, Georgia
| | - Aza Kobakhidze
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Maria Kulp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Maria Kuhtinskaja
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Tiit Lukk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Maria Letizia Gargano
- Departament of Schol, Plant, and Food Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A - 70126 Bari, Italy
| | - Giuseppe Venturella
- Italian Society of Medicinal Mushrooms, Pisa, Italy; Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | - Eva Kachlishvili
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Eka Metreveli
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Vladimir I Elisashvili
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Mikheil Asatiani
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| |
Collapse
|
3
|
Lin L, Xu J. Production of Fungal Pigments: Molecular Processes and Their Applications. J Fungi (Basel) 2022; 9:44. [PMID: 36675865 PMCID: PMC9866555 DOI: 10.3390/jof9010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
Due to the negative environmental and health effects of synthetic colorants, pigments of natural origins of plants and microbes constitute an abundant source for the food, cosmetic, textile, and pharmaceutical industries. The demands for natural alternatives, which involve natural colorants and natural biological processes for their production, have been growing rapidly in recent decades. Fungi contain some of the most prolific pigment producers, and they excel in bioavailability, yield, cost-effectiveness, and ease of large-scale cell culture as well as downstream processing. In contrast, pigments from plants are often limited by seasonal and geographic factors. Here, we delineate the taxonomy of pigmented fungi and fungal pigments, with a focus on the biosynthesis of four major categories of pigments: carotenoids, melanins, polyketides, and azaphilones. The molecular mechanisms and metabolic bases governing fungal pigment biosynthesis are discussed. Furthermore, we summarize the environmental factors that are known to impact the synthesis of different fungal pigments. Most of the environmental factors that enhance fungal pigment production are related to stresses. Finally, we highlight the challenges facing fungal pigment utilization and future trends of fungal pigment development. This integrated review will facilitate further exploitations of pigmented fungi and fungal pigments for broad applications.
Collapse
Affiliation(s)
- Lan Lin
- Medical School, School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Diseases (MOE), Southeast University, Nanjing 210009, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
4
|
Gómez-Gaviria M, Ramírez-Sotelo U, Mora-Montes HM. Non- albicans Candida Species: Immune Response, Evasion Mechanisms, and New Plant-Derived Alternative Therapies. J Fungi (Basel) 2022; 9:jof9010011. [PMID: 36675832 PMCID: PMC9862154 DOI: 10.3390/jof9010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Fungal infections caused by Candida species have become a constant threat to public health, especially for immunocompromised patients, who are considered susceptible to this type of opportunistic infections. Candida albicans is known as the most common etiological agent of candidiasis; however, other species, such as Candida tropicalis, Candida parapsilosis, Nakaseomyces glabrata (previously known as Candida glabrata), Candida auris, Candida guilliermondii, and Pichia kudriavzevii (previously named as Candida krusei), have also gained great importance in recent years. The increasing frequency of the isolation of this non-albicans Candida species is associated with different factors, such as constant exposure to antifungal drugs, the use of catheters in hospitalized patients, cancer, age, and geographic distribution. The main concerns for the control of these pathogens include their ability to evade the mechanisms of action of different drugs, thus developing resistance to antifungal drugs, and it has also been shown that some of these species also manage to evade the host's immunity. These biological traits make candidiasis treatment a challenging task. In this review manuscript, a detailed update of the recent literature on the six most relevant non-albicans Candida species is provided, focusing on the immune response, evasion mechanisms, and new plant-derived compounds with antifungal properties.
Collapse
|
5
|
Yaakoub H, Mina S, Calenda A, Bouchara JP, Papon N. Oxidative stress response pathways in fungi. Cell Mol Life Sci 2022; 79:333. [PMID: 35648225 PMCID: PMC11071803 DOI: 10.1007/s00018-022-04353-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Fungal response to any stress is intricate, specific, and multilayered, though it employs only a few evolutionarily conserved regulators. This comes with the assumption that one regulator operates more than one stress-specific response. Although the assumption holds true, the current understanding of molecular mechanisms that drive response specificity and adequacy remains rudimentary. Deciphering the response of fungi to oxidative stress may help fill those knowledge gaps since it is one of the most encountered stress types in any kind of fungal niche. Data have been accumulating on the roles of the HOG pathway and Yap1- and Skn7-related pathways in mounting distinct and robust responses in fungi upon exposure to oxidative stress. Herein, we review recent and most relevant studies reporting the contribution of each of these pathways in response to oxidative stress in pathogenic and opportunistic fungi after giving a paralleled overview in two divergent models, the budding and fission yeasts. With the concept of stress-specific response and the importance of reactive oxygen species in fungal development, we first present a preface on the expanding domain of redox biology and oxidative stress.
Collapse
Affiliation(s)
- Hajar Yaakoub
- Univ Angers, Univ Brest, IRF, SFR ICAT, 49000, Angers, France
| | - Sara Mina
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | | | | | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, 49000, Angers, France.
| |
Collapse
|
6
|
Ottilie S, Luth MR, Hellemann E, Goldgof GM, Vigil E, Kumar P, Cheung AL, Song M, Godinez-Macias KP, Carolino K, Yang J, Lopez G, Abraham M, Tarsio M, LeBlanc E, Whitesell L, Schenken J, Gunawan F, Patel R, Smith J, Love MS, Williams RM, McNamara CW, Gerwick WH, Ideker T, Suzuki Y, Wirth DF, Lukens AK, Kane PM, Cowen LE, Durrant JD, Winzeler EA. Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance. Commun Biol 2022; 5:128. [PMID: 35149760 PMCID: PMC8837787 DOI: 10.1038/s42003-022-03076-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
In vitro evolution and whole genome analysis were used to comprehensively identify the genetic determinants of chemical resistance in Saccharomyces cerevisiae. Sequence analysis identified many genes contributing to the resistance phenotype as well as numerous amino acids in potential targets that may play a role in compound binding. Our work shows that compound-target pairs can be conserved across multiple species. The set of 25 most frequently mutated genes was enriched for transcription factors, and for almost 25 percent of the compounds, resistance was mediated by one of 100 independently derived, gain-of-function SNVs found in a 170 amino acid domain in the two Zn2C6 transcription factors YRR1 and YRM1 (p < 1 × 10−100). This remarkable enrichment for transcription factors as drug resistance genes highlights their important role in the evolution of antifungal xenobiotic resistance and underscores the challenge to develop antifungal treatments that maintain potency. Ottilie et al. employ an experimental evolution approach to investigate the role of transcription factors in yeast chemical resistance. Most emergent mutations in resistant strains were enriched in transcription factor coding genes, highlighting their importance in drug resistance.
Collapse
Affiliation(s)
- Sabine Ottilie
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Madeline R Luth
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Erich Hellemann
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Gregory M Goldgof
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Eddy Vigil
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Prianka Kumar
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Andrea L Cheung
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Miranda Song
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Karla P Godinez-Macias
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Krypton Carolino
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Jennifer Yang
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Gisel Lopez
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Matthew Abraham
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Maureen Tarsio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA
| | - Emmanuelle LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Jake Schenken
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Felicia Gunawan
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Reysha Patel
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Joshua Smith
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Melissa S Love
- Calibr, a division of The Scripps Research Institutes, La Jolla, CA, 92037, USA
| | - Roy M Williams
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA.,Aspen Neuroscience, San Diego, CA, 92121, USA
| | - Case W McNamara
- Calibr, a division of The Scripps Research Institutes, La Jolla, CA, 92037, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA, 92037, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yo Suzuki
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Amanda K Lukens
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
7
|
Li J, Sun Y, Liu F, Zhou Y, Yan Y, Zhou Z, Wang P, Zhou S. Increasing NADPH impairs fungal H 2O 2 resistance by perturbing transcriptional regulation of peroxiredoxin. BIORESOUR BIOPROCESS 2022; 9:1. [PMID: 38647831 PMCID: PMC10992141 DOI: 10.1186/s40643-021-00489-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
NADPH provides the reducing power for decomposition of reactive oxygen species (ROS), making it an indispensable part during ROS defense. It remains uncertain, however, if living cells respond to the ROS challenge with an elevated intracellular NADPH level or a more complex NADPH-mediated manner. Herein, we employed a model fungus Aspergillus nidulans to probe this issue. A conditional expression of glucose-6-phosphate dehydrogenase (G6PD)-strain was constructed to manipulate intracellular NADPH levels. As expected, turning down the cellular NADPH concentration drastically lowered the ROS response of the strain; it was interesting to note that increasing NADPH levels also impaired fungal H2O2 resistance. Further analysis showed that excess NADPH promoted the assembly of the CCAAT-binding factor AnCF, which in turn suppressed NapA, a transcriptional activator of PrxA (the key NADPH-dependent ROS scavenger), leading to low antioxidant ability. In natural cell response to oxidative stress, we noticed that the intracellular NADPH level fluctuated "down then up" in the presence of H2O2. This might be the result of a co-action of the PrxA-dependent NADPH consumption and NADPH-dependent feedback of G6PD. The fluctuation of NADPH is well correlated to the formation of AnCF assembly and expression of NapA, thus modulating the ROS defense. Our research elucidated how A. nidulans precisely controls NADPH levels for ROS defense.
Collapse
Affiliation(s)
- Jingyi Li
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanwei Sun
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Feiyun Liu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yao Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yunfeng Yan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Twin cities, Saint Paul, MN, 55108, USA.
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
8
|
Zou R, Wang Y, Duan M, Guo M, Zhang Q, Zheng H. Dysbiosis of Gut Fungal Microbiota in Children with Autism Spectrum Disorders. J Autism Dev Disord 2021; 51:267-275. [PMID: 32447559 DOI: 10.1007/s10803-020-04543-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we tested the feces of children with ASD and those of healthy children, and the overall changing of the gut fungal community was observed in ASD children compared with controls. However, there were no abundant fungi populations showed significant variations between the ASD and Control group both at phylum and class level. Among the 507 genera identified, Saccharomyces and Aspergillus showed significant differences between ASD (59.07%) and Control (40.36%), indicating that they may be involved in the abnormal gut fungal community structure of ASD. When analyzed at the species level, a decreased abundance in Aspergillus versicolor was observed while Saccharomyces cerevisiae was increased in children with ASD relative to controls. Overall, this study characterized the fungal microbiota profile of children with ASD and identified potential diagnostic species closely related to the immune response in ASD.
Collapse
Affiliation(s)
- Rong Zou
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Basic Medical Sciences, Fudan University, 2140 Xietu road, Xuhui district, Shanghai, China
| | - Yuezhu Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Mengmeng Duan
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Basic Medical Sciences, Fudan University, 2140 Xietu road, Xuhui district, Shanghai, China
| | - Min Guo
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Basic Medical Sciences, Fudan University, 2140 Xietu road, Xuhui district, Shanghai, China
| | - Qiang Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Huajun Zheng
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Basic Medical Sciences, Fudan University, 2140 Xietu road, Xuhui district, Shanghai, China.
| |
Collapse
|
9
|
Lin L, Xu J. Fungal Pigments and Their Roles Associated with Human Health. J Fungi (Basel) 2020; 6:E280. [PMID: 33198121 PMCID: PMC7711509 DOI: 10.3390/jof6040280] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Fungi can produce myriad secondary metabolites, including pigments. Some of these pigments play a positive role in human welfare while others are detrimental. This paper reviews the types and biosynthesis of fungal pigments, their relevance to human health, including their interactions with host immunity, and recent progresses in their structure-activity relationships. Fungal pigments are grouped into carotenoids, melanin, polyketides, and azaphilones, etc. These pigments are phylogenetically broadly distributed. While the biosynthetic pathways for some fungal pigments are known, the majority remain to be elucidated. Understanding the genes and metabolic pathways involved in fungal pigment synthesis is essential to genetically manipulate the production of both the types and quantities of specific pigments. A variety of fungal pigments have shown wide-spectrum biological activities, including promising pharmacophores/lead molecules to be developed into health-promoting drugs to treat cancers, cardiovascular disorders, infectious diseases, Alzheimer's diseases, and so on. In addition, the mechanistic elucidation of the interaction of fungal pigments with the host immune system provides valuable clues for fighting fungal infections. The great potential of fungal pigments have opened the avenues for academia and industries ranging from fundamental biology to pharmaceutical development, shedding light on our endeavors for disease prevention and treatment.
Collapse
Affiliation(s)
- Lan Lin
- School of Life Science and Technology, Department of Bioengineering, Key Laboratory of Developmental Genes and Human Diseases (MOE), Southeast University, Nanjing 210096, Jiangsu, China;
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
10
|
Pais P, Califórnia R, Galocha M, Viana R, Ola M, Cavalheiro M, Takahashi-Nakaguchi A, Chibana H, Butler G, Teixeira MC. Candida glabrata Transcription Factor Rpn4 Mediates Fluconazole Resistance through Regulation of Ergosterol Biosynthesis and Plasma Membrane Permeability. Antimicrob Agents Chemother 2020; 64:e00554-20. [PMID: 32571817 PMCID: PMC7449212 DOI: 10.1128/aac.00554-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/13/2020] [Indexed: 01/05/2023] Open
Abstract
The ability to acquire azole resistance is an emblematic trait of the fungal pathogen Candida glabrata Understanding the molecular basis of azole resistance in this pathogen is crucial for designing more suitable therapeutic strategies. This study shows that the C. glabrata transcription factor (TF) CgRpn4 is a determinant of azole drug resistance. RNA sequencing during fluconazole exposure revealed that CgRpn4 regulates the expression of 212 genes, activating 80 genes and repressing, likely in an indirect fashion, 132 genes. Targets comprise several proteasome and ergosterol biosynthesis genes, including ERG1, ERG2, ERG3, and ERG11 The localization of CgRpn4 to the nucleus increases upon fluconazole stress. Consistent with a role in ergosterol and plasma membrane homeostasis, CgRpn4 is required for the maintenance of ergosterol levels upon fluconazole stress, which is associated with a role in the upkeep of cell permeability and decreased intracellular fluconazole accumulation. We provide evidence that CgRpn4 directly regulates ERG11 expression through the TTGCAAA binding motif, reinforcing the relevance of this regulatory network in azole resistance. In summary, CgRpn4 is a new regulator of the ergosterol biosynthesis pathway in C. glabrata, contributing to plasma membrane homeostasis and, thus, decreasing azole drug accumulation.
Collapse
Affiliation(s)
- Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Raquel Califórnia
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Mónica Galocha
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Romeu Viana
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Mihaela Ola
- School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, Dublin, Ireland
| | - Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | | | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Geraldine Butler
- School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, Dublin, Ireland
| | - Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| |
Collapse
|
11
|
Chromatin Structure and Drug Resistance in Candida spp. J Fungi (Basel) 2020; 6:jof6030121. [PMID: 32751495 PMCID: PMC7559719 DOI: 10.3390/jof6030121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
Anti-microbial resistance (AMR) is currently one of the most serious threats to global human health and, appropriately, research to tackle AMR garnishes significant investment and extensive attention from the scientific community. However, most of this effort focuses on antibiotics, and research into anti-fungal resistance (AFR) is vastly under-represented in comparison. Given the growing number of vulnerable, immunocompromised individuals, as well as the positive impact global warming has on fungal growth, there is an immediate urgency to tackle fungal disease, and the disturbing rise in AFR. Chromatin structure and gene expression regulation play pivotal roles in the adaptation of fungal species to anti-fungal stress, suggesting a potential therapeutic avenue to tackle AFR. In this review we discuss both the genetic and epigenetic mechanisms by which chromatin structure can dictate AFR mechanisms and will present evidence of how pathogenic yeast, specifically from the Candida genus, modify chromatin structure to promote survival in the presence of anti-fungal drugs. We also discuss the mechanisms by which anti-chromatin therapy, specifically lysine deacetylase inhibitors, influence the acquisition and phenotypic expression of AFR in Candida spp. and their potential as effective adjuvants to mitigate against AFR.
Collapse
|
12
|
Salazar SB, Simões RS, Pedro NA, Pinheiro MJ, Carvalho MFNN, Mira NP. An Overview on Conventional and Non-Conventional Therapeutic Approaches for the Treatment of Candidiasis and Underlying Resistance Mechanisms in Clinical Strains. J Fungi (Basel) 2020; 6:E23. [PMID: 32050673 PMCID: PMC7151124 DOI: 10.3390/jof6010023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Fungal infections and, in particular, those caused by species of the Candida genus, are growing at an alarming rate and have high associated rates of mortality and morbidity. These infections, generally referred as candidiasis, range from common superficial rushes caused by an overgrowth of the yeasts in mucosal surfaces to life-threatening disseminated mycoses. The success of currently used antifungal drugs to treat candidiasis is being endangered by the continuous emergence of resistant strains, specially among non-albicans Candida species. In this review article, the mechanisms of action of currently used antifungals, with emphasis on the mechanisms of resistance reported in clinical isolates, are reviewed. Novel approaches being taken to successfully inhibit growth of pathogenic Candida species, in particular those based on the exploration of natural or synthetic chemicals or on the activity of live probiotics, are also reviewed. It is expected that these novel approaches, either used alone or in combination with traditional antifungals, may contribute to foster the identification of novel anti-Candida therapies.
Collapse
Affiliation(s)
- Sara B. Salazar
- Department of Bioengineering, Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (S.B.S.); (R.S.S.); (N.A.P.); (M.J.P.)
| | - Rita S. Simões
- Department of Bioengineering, Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (S.B.S.); (R.S.S.); (N.A.P.); (M.J.P.)
| | - Nuno A. Pedro
- Department of Bioengineering, Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (S.B.S.); (R.S.S.); (N.A.P.); (M.J.P.)
| | - Maria Joana Pinheiro
- Department of Bioengineering, Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (S.B.S.); (R.S.S.); (N.A.P.); (M.J.P.)
| | - Maria Fernanda N. N. Carvalho
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Nuno P. Mira
- Department of Bioengineering, Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (S.B.S.); (R.S.S.); (N.A.P.); (M.J.P.)
| |
Collapse
|
13
|
Staniszewska M, Gizińska M, Kazek M, de Jesús González-Hernández R, Ochal Z, Mora-Montes HM. New antifungal 4-chloro-3-nitrophenyldifluoroiodomethyl sulfone reduces the Candida albicans pathogenicity in the Galleria mellonella model organism. Braz J Microbiol 2019; 51:5-14. [PMID: 31486049 PMCID: PMC7058776 DOI: 10.1007/s42770-019-00140-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/10/2019] [Indexed: 12/13/2022] Open
Abstract
Candida albicans represents an interesting microorganism to study complex host-pathogen interactions and for the development of effective antifungals. Our goal was to assess the efficacy of 4-chloro-3-nitrophenyldifluoroiodomethyl sulfone (named Sulfone) against the C. albicans infections in the Galleria mellonella host model. We assessed invasiveness of CAI4 parental strain and mutants: kex2Δ/KEX2 and kex2Δ/kex2Δ in G. mellonella treated with Sulfone. We determined that KEX2 expression was altered following Sulfone treatment in G. mellonella-C. albicans infection model. Infection with kex2Δ/kex2Δ induced decreased inflammation and minimal fault in fitness of larvae vs CAI4. Fifty percent of larvae died within 4–5 days (P value < 0.0001) when infected with CAI4 and kex2Δ/KEX2 at 109 CFU/mL; survival reached 100% in those injected with kex2Δ/kex2Δ. Larvae treated with Sulfone at 0.01 mg/kg 30 min before infection with all C. albicans tested survived infection at 90–100% vs C. albicans infected-PBS-treated larvae. Hypersensitive to Sulfone, kex2Δ/kex2Δ reduced virulence in survival. KEX2 was down-regulated when larvae were treated with Sulfone: 30 min before and 2 h post-SC5314-wild-type infection respectively. kex2Δ/kex2Δ was able to infect larvae, but failed to kill host when treated with Sulfone. Sulfone can be used to prevent or treat candidiasis. G. mellonella facilitates studding of host-pathogen interactions, i.e., testing host vs panel of C. albicans mutants when antifungal is dosed.
Collapse
Affiliation(s)
- Monika Staniszewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| | | | - Michalina Kazek
- Laboratory of Physiology, The Witold Stefański Institute of Parasitology, Polish Academy of Science, Twarda 51/55, 00-818, Warsaw, Poland
| | - Roberto de Jesús González-Hernández
- Departamento de Biologia, Division de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., Mexico
| | - Zbigniew Ochal
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Héctor M Mora-Montes
- Departamento de Biologia, Division de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., Mexico
| |
Collapse
|
14
|
Shafeeq S, Pannanusorn S, Elsharabasy Y, Ramírez-Zavala B, Morschhäuser J, Römling U. Impact of manganese on biofilm formation and cell morphology of Candida parapsilosis clinical isolates with different biofilm forming abilities. FEMS Yeast Res 2019; 19:5548773. [PMID: 31403663 PMCID: PMC6761954 DOI: 10.1093/femsyr/foz057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022] Open
Abstract
The commensal species Candida parapsilosis is an emerging human pathogen that has the ability to form biofilms. In this study, we explored the impact of the divalent cations cobalt (Co2+), copper (Cu2+), iron (Fe3+), manganese (Mn2+), nickel (Ni2+) and zinc (Zn2+) on biofilm formation of clinical isolates of C. parapsilosis with no, low and high biofilm forming abilities at 30 and 37°C. All strains besides one isolate showed a concentration-dependent enhancement of biofilm formation at 30°C in the presence of Mn2+ with a maximum at 2 mM. The biofilm forming ability of no and low biofilm forming isolates was >2-fold enhanced in the presence of 2 mM Mn2+, while the effect in high biofilm forming isolate was significantly less pronounced. Of note, cells in the biofilms of no and low biofilm forming strains differentiated into yeast and pseudohyphal cells similar in morphology to high biofilm formers. The biofilm transcriptional activator BCR1 has a dual developmental role in the absence and presence of 2 mM Mn2+ as it promoted biofilm formation of no biofilm forming strains, and, surprisingly, suppressed cells of no biofilm forming strains to develop into pseudohyphae and/or hyphae. Thus, environmental conditions can significantly affect the amount of biofilm formation and cell morphology of C. parapsilosis with Mn2+ to overcome developmental blocks to trigger biofilm formation and to partially relieve BCR1 suppressed cell differentiation.
Collapse
Affiliation(s)
- Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17165, Stockholm, Sweden
| | - Srisuda Pannanusorn
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17165, Stockholm, Sweden.,Department of Biotechnology, Faculty of Science and Technology, Thammasat University, 12120, Bangkok, Thailand
| | - Youssef Elsharabasy
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17165, Stockholm, Sweden
| | - Bernardo Ramírez-Zavala
- Institute for Molecular Infection Biology, University of Würzburg, D-97080, Würzburg, Germany
| | - Joachim Morschhäuser
- Institute for Molecular Infection Biology, University of Würzburg, D-97080, Würzburg, Germany
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17165, Stockholm, Sweden
| |
Collapse
|
15
|
Zhang J, Li L, Lv Q, Yan L, Wang Y, Jiang Y. The Fungal CYP51s: Their Functions, Structures, Related Drug Resistance, and Inhibitors. Front Microbiol 2019; 10:691. [PMID: 31068906 PMCID: PMC6491756 DOI: 10.3389/fmicb.2019.00691] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
CYP51 (Erg11) belongs to the cytochrome P450 monooxygenase (CYP) superfamily and mediates a crucial step of the synthesis of ergosterol, which is a fungal-specific sterol. It is also the target of azole drugs in clinical practice. In recent years, researches on fungal CYP51 have stepped into a new stage attributing to the discovery of crystal structures of the homologs in Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. This review summarizes the functions, structures of fungal CYP51 proteins, and the inhibitors targeting these homologs. In particular, several drug-resistant mechanisms associated with the fungal CYP51s are introduced. The sequences and crystal structures of CYP51 proteins in different fungal species are also compared. These will provide new insights for the advancement of research on antifungal agents.
Collapse
Affiliation(s)
- Jingxiang Zhang
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Liping Li
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Quanzhen Lv
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Lan Yan
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- *Correspondence: Lan Yan, Yan Wang, Yuanying Jiang,
| | - Yan Wang
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- *Correspondence: Lan Yan, Yan Wang, Yuanying Jiang,
| | - Yuanying Jiang
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Lan Yan, Yan Wang, Yuanying Jiang,
| |
Collapse
|
16
|
Messina JA, Wolfe CR, Hemmersbach-Miller M, Milano C, Todd JL, Reynolds J, Alexander BD, Schell WA, Cuomo CA, Perfect JR. Genomic characterization of recurrent mold infections in thoracic transplant recipients. Transpl Infect Dis 2018; 20:e12935. [PMID: 29851203 DOI: 10.1111/tid.12935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022]
Abstract
Invasive mold disease in thoracic organ transplant recipients is a well-recognized complication, but the long-term persistence of molds within the human body and evasion of host defenses has not been well-described. We present 2 cases of invasive mold disease (Verruconis gallopava and Aspergillus fumigatus) in thoracic transplant recipients who had the same mold cultured years prior to the invasive disease presentation. The paired isolates from the index and recurrent infections in both patients were compared using whole-genome sequencing to determine if the same strain of mold caused both the index and recurrent infections. In Case 1, the isolates were found to be of the same strain indicating that the initial colonizing isolate identified pre-transplant eventually caused invasive mold disease post-transplant while in Case 2, the 2 isolates were not of the same strain. These results demonstrate the distinct possibility of molds both persisting within the human body for years prior to invasive mold disease or the long-term risk of recurrent, persistent infection with more than one strain. Further studies of long-term molecular epidemiology of IMD and risk factors for mold persistence in transplant recipients are encouraged.
Collapse
Affiliation(s)
- Julia A Messina
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, USA
| | - Cameron R Wolfe
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, USA
| | | | - Carmelo Milano
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University, Durham, NC, USA
| | - Jamie L Todd
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Duke University, Durham, NC, USA
| | - John Reynolds
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Duke University, Durham, NC, USA
| | - Barbara D Alexander
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, USA
| | - Wiley A Schell
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, USA
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
17
|
Cavalheiro M, Teixeira MC. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front Med (Lausanne) 2018; 5:28. [PMID: 29487851 PMCID: PMC5816785 DOI: 10.3389/fmed.2018.00028] [Citation(s) in RCA: 372] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/26/2018] [Indexed: 12/19/2022] Open
Abstract
Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis, and Candida parapsilosis, highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed.
Collapse
Affiliation(s)
- Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel Cacho Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
18
|
Progressive loss of hybrid histidine kinase genes during the evolution of budding yeasts (Saccharomycotina). Curr Genet 2017; 64:841-851. [DOI: 10.1007/s00294-017-0797-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 11/26/2022]
|
19
|
Vella A, De Carolis E, Mello E, Perlin DS, Sanglard D, Sanguinetti M, Posteraro B. Potential Use of MALDI-ToF Mass Spectrometry for Rapid Detection of Antifungal Resistance in the Human Pathogen Candida glabrata. Sci Rep 2017; 7:9099. [PMID: 28831086 PMCID: PMC5567316 DOI: 10.1038/s41598-017-09329-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/10/2017] [Indexed: 11/30/2022] Open
Abstract
The echinocandins are relatively new antifungal drugs that represent, together with the older azoles, the recommended and/or preferred agents to treat candidaemia and other forms of invasive candidiasis in human patients. If “time is of the essence” to reduce the mortality for these infections, the administration of appropriate antifungal therapy could be accelerated by the timely reporting of laboratory test results. In this study, we attempted to validate a MALDI-ToF mass spectrometry-based assay for the antifungal susceptibility testing (AFST) of the potentially multidrug-resistant pathogen Candida glabrata against anidulafungin and fluconazole. The practical applicability of the assay, reported here as MS-AFST, was assessed with a panel of clinical isolates that were selected to represent phenotypically and genotypically/molecularly susceptible or resistant strains. The data show the potential of our assay for rapid detection of antifungal resistance, although the MS-AFST assay performed at 3 h of the in vitro antifungal exposure failed to detect C. glabrata isolates with echinocandin resistance-associated FKS2 mutations. However, cell growth kinetics in the presence of anidulafungin revealed important cues about the in vitro fitness of C. glabrata isolates, which may lead to genotypic or phenotypic antifungal testing in clinical practice.
Collapse
Affiliation(s)
- Antonietta Vella
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo F. Vito 1, 00168, Rome, Italy
| | - Elena De Carolis
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo F. Vito 1, 00168, Rome, Italy
| | - Enrica Mello
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo F. Vito 1, 00168, Rome, Italy
| | - David S Perlin
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, 225 Warren Street, Rutgers, Newark, New Jersey, 07103, USA
| | - Dominique Sanglard
- Institute of Microbiology, University Hospital of Lausanne, Rue du Bugnon 48, CH-1011, Lausanne, Switzerland
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo F. Vito 1, 00168, Rome, Italy.
| | - Brunella Posteraro
- Institute of Public Health (Section of Hygiene), Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo F. Vito 1, 00168, Rome, Italy
| |
Collapse
|